Publications by authors named "Maya P Nair"

RNA interference holds tremendous potential as a therapeutic approach, especially in the treatment of malignant tumors. However, efficient and biocompatible delivery methods are needed for systemic delivery of small interfering RNA (siRNA). To maintain a high level of growth, tumor cells scavenge high-density lipoprotein (HDL) particles by overexpressing its receptor: scavenger receptor type B1 (SR-B1).

View Article and Find Full Text PDF

The solvatochromic fluorescent probe 8-anilino-1-naphthalenesulfonate (ANS) has been used to study the hydrophobicity and conformational dynamics of lecithin:cholesterol acyltransferase (LCAT). The ANS to LCAT binding constant was estimated from titrations with ANS, keeping a constant concentration of LCAT (2 microM). Apparent binding constant was found to be dependent on the excitation.

View Article and Find Full Text PDF

Reconstituted (synthetic) high-density lipoprotein particles carrying paclitaxel (rHDL/PTX) were prepared with substantially higher PTX content than reported earlier. The rHDL/PTX complexes seemed to be primarily spherical nanoparticles when examined via electron microscopy, with a constant composition, molecular weight and exceptional stability even after ultracentrifugation and storage for up to 6 months. The rHDL/PTX nanoparticles had superior cytotoxicity against several cancer cell lines (MCF7, DU145, OV1063 and OVCAR-3), the half maximal inhibitory concentration (IC50) having been found to be 5-20 times lower than that of the free drug.

View Article and Find Full Text PDF

RALBP1 (RLIP76) is the major transporter of doxorubicin (DOX) in lung cancer cells, and that the difference in sensitivity of small cell lung cancer (SCLC) cells to DOX is due to differential phosphorylation by PKCalpha. Our recent studies have suggested that RALBP1 present in MCF-7 breast cancer cells has significantly lower specific activity for transport of DOX than wild-type recombinant protein, and its level of expression is significantly lower than that in lung cancer cells. In the present study, we have explored whether or not this is a generalized phenomenon for breast cancer, and have compared the relative contributions of RALBP1 and the ABC-family transporter, ABCG2 to total DOX transport activities in two SCLC (H1417 and H1618), two non-small cell lung cancer (NSCLC) (H358 and H520), and three breast cancer (T-47D, MDA-MB231, and MCF-7) cell lines.

View Article and Find Full Text PDF

Fluorescence spectroscopy has been used to investigate the conformational changes that occur upon binding of wild type (WT) and mutant (Thr123Ile) lecithin:cholesterol acyltransferase (LCAT) to the potential substrates (dioleoyl-phosphatidyl choline [DOPC] and high density lipoprotein [HDL]). For a detailed analysis of structural differences between WT and mutant LCAT, we performed decompositional analysis of a set of tryptophan fluorescence spectra, measured at increasing concentrations of external quenchers (acrylamide and KI). The data obtained show that Thr123Ile mutation in LCAT leads to a conformation that is likely to be more rigid (less mobile/flexible) than that of the WT protein with a redistribution of charged residues around exposed tryptophan fluorophores.

View Article and Find Full Text PDF

Lecithin:cholesterol acyltransferase (LCAT) is a key enzyme for the transfer of mammalian cholesterol from peripheral tissues to the liver. In patients deficient in LCAT, serum cholesterol levels rise and can lead to corneal opacity, proteinuria, anemia, and kidney failure. As early as 1968, relatively low volume transfusion of normal plasma was shown to temporarily correct the abnormal lipoprotein profiles in LCAT-deficient patients.

View Article and Find Full Text PDF