Myxozoa is a unique group of obligate endoparasites in the phylum Cnidaria that can cause emerging diseases in wild and cultured fish populations. Recently, we identified a new myxozoan species, , which infects the gills of cultured tilapia while suppressing host immunity. To uncover the molecular mechanisms underlying this successful parasitic strategy, we conducted transcriptomics analysis of throughout the infection.
View Article and Find Full Text PDFBackground: The design of ecologically sustainable and plant-beneficial soil systems is a key goal in actively manipulating root-associated microbiomes. Community engineering efforts commonly seek to harness the potential of the indigenous microbiome through substrate-mediated recruitment of beneficial members. In most sustainable practices, microbial recruitment mechanisms rely on the application of complex organic mixtures where the resources/metabolites that act as direct stimulants of beneficial groups are not characterized.
View Article and Find Full Text PDFMyxozoa (Cnidaria) is a large group of microscopic obligate endoparasites that can cause emerging diseases, affecting wild fish populations and fisheries. Recently, the myxozoan was found to infect the gills of hybrid tilapia (Nile tilapia () × Jordan/blue tilapia ()), causing high morbidity and mortality. Here, we used comparative transcriptomics to elucidate the molecular processes occurring in the fish host following infection by .
View Article and Find Full Text PDFMicrobial fuel cells (MFCs) generate energy while aiding the biodegradation of waste through the activity of an electroactive mixed biofilm. Metabolic cooperation is essential for MFCs' efficiency, especially during early colonization. Thus, examining specific ecological processes that drive the assembly of anode biofilms is highly important for shortening startup times and improving MFC performance, making this technology cost-effective and sustainable.
View Article and Find Full Text PDFThis study is an initial description and discussion of the kidney and liver microbial communities of five common fish species sampled from four sites along the Eastern Mediterranean Sea shoreline. The goals of the present study were to establish a baseline dataset of microbial communities associated with the tissues of wild marine fish, in order to examine species-specific microbial characteristics and to screen for candidate pathogens. This issue is especially relevant due to the development of mariculture farms and the possible transmission of pathogens from wild to farmed fish and vice versa.
View Article and Find Full Text PDFEcosystem dynamics in monomictic lakes are characterized by seasonal thermal mixing and stratification. These physical processes bring about seasonal variations in nutrients and organic matter fluxes, affecting the biogeochemical processes that occur in the water column. Physical and chemical dynamics are generally reflected in seasonal structural changes in the phytoplankton and bacterio-plankton community.
View Article and Find Full Text PDFAdvances in metagenomics enable high resolution description of complex bacterial communities in their natural environments. Consequently, conceptual approaches for community level functional analysis are in high need. Here, we introduce a framework for a metagenomics-based analysis of community functions.
View Article and Find Full Text PDFEndophytes have profound impacts on plants, including beneficial effects on agriculturally important traits. We hypothesized that endophytes in wild plants include beneficial endophytes that are absent or underrepresented in domesticated crops. In this work, we studied the structure of endophyte communities in wheat-related grasses, Triticum dicoccoides and Aegilops sharonensis, and compared it to an endophyte community from wheat (T.
View Article and Find Full Text PDFPlant microbiomes are critical to host adaptation and impact plant productivity and health. Root-associated microbiomes vary by soil and host genotype, but the contribution of these factors to community structure and metabolic potential has not been fully addressed. Here we characterize root microbial communities of two disparate agricultural crops grown in the same natural soil in a controlled and replicated experimental system.
View Article and Find Full Text PDFIn their natural environment, plants experience multiple biotic interactions and respond to this complexity in an integrated manner. Therefore, plant responses to herbivory are flexible and depend on the context and complexity in which they occur. For example, plant growth promoting rhizobacteria (PGPR) can enhance plant growth and induce resistance against microbial pathogens and herbivorous insects by a phenomenon termed induced systemic resistance (ISR).
View Article and Find Full Text PDF