Speech comprehension is severely compromised when several people talk at once, due to limited perceptual and cognitive resources. In such circumstances, top-down attention mechanisms can actively prioritize processing of task-relevant speech. However, behavioral and neural evidence suggest that this selection is not exclusive, and the system may have sufficient capacity to process additional speech input as well.
View Article and Find Full Text PDFMany situations require focusing attention on one speaker, while monitoring the environment for potentially important information. Some have proposed that dividing attention among 2 speakers involves behavioral trade-offs, due to limited cognitive resources. However the severity of these trade-offs, particularly under ecologically-valid circumstances, is not well understood.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe prefrontal cortex (PFC) plays an important role in regulating social functions in mammals, and its dysfunction has been linked to social deficits in neurodevelopmental disorders. Yet little is known of how the PFC encodes social information and how social representations may be altered in such disorders. Here, we show that neurons in the medial PFC of freely behaving male mice preferentially respond to socially relevant olfactory cues.
View Article and Find Full Text PDFBackground: Prolonged neuromodulatory regimes, such as those critically involved in promoting arousal and suppressing sleep-associated synchronous activity patterns, might be expected to trigger adaptation processes and, consequently, a decline in neuromodulator-driven effects. This possibility, however, has rarely been addressed.
Results: Using networks of cultured cortical neurons, acetylcholine microinjections and a novel closed-loop 'synchrony-clamp' system, we found that acetylcholine pulses strongly suppressed network synchrony.
Long-term, repeated measurements of individual synaptic properties have revealed that synapses can undergo significant directed and spontaneous changes over time scales of minutes to weeks. These changes are presumably driven by a large number of activity-dependent and independent molecular processes, yet how these processes integrate to determine the totality of synaptic size remains unknown. Here we propose, as an alternative to detailed, mechanistic descriptions, a statistical approach to synaptic size dynamics.
View Article and Find Full Text PDFCholinergic neuromodulation plays key roles in the regulation of neuronal excitability, network activity, arousal, and behavior. On longer time scales, cholinergic systems play essential roles in cortical development, maturation, and plasticity. Presumably, these processes are associated with substantial synaptic remodeling, yet to date, long-term relationships between cholinergic tone and synaptic remodeling remain largely unknown.
View Article and Find Full Text PDFSynaptic plasticity is widely believed to constitute a key mechanism for modifying functional properties of neuronal networks. This belief implicitly implies, however, that synapses, when not driven to change their characteristics by physiologically relevant stimuli, will maintain these characteristics over time. How tenacious are synapses over behaviorally relevant time scales? To begin to address this question, we developed a system for continuously imaging the structural dynamics of individual synapses over many days, while recording network activity in the same preparations.
View Article and Find Full Text PDFJ Agric Food Chem
December 2007
Pomegranate oil (PGO) is a unique and quite rare edible oil produced from Punica granatum L. seeds. It is considered to be a powerful health-benefiting agent, due to its antioxidative, anticancer, and antilipidemic properties.
View Article and Find Full Text PDF