Arsenic contamination in groundwater is pervasive throughout deltaic regions of Southeast Asia and threatens the health of millions. The speciation of As in sediments overlying contaminated aquifers is poorly constrained. Here, we investigate the chemical and mineralogical compositions of sediment cores collected from the Mekong Delta in Vietnam, elucidate the speciation of iron and arsenic, and relate them to the sediment depositional environment.
View Article and Find Full Text PDFPyrite is a ubiquitous mineral in reducing environments and is well-known to incorporate trace elements such as Co, Ni, Se, Au, and commonly As. Indeed, As-bearing pyrite is observed in a wide variety of sedimentary environments, making it a major sink for this toxic metalloid. Based on the observation of natural hydrothermal pyrites, As is usually assigned to the occupation of tetrahedral S sites, with the same oxidation state as in arsenopyrite (FeAsS), although rare occurrences of As and As have been reported.
View Article and Find Full Text PDFAcid mine drainages (AMD) are major sources of pollution to the environment. Passive bio-remediation technologies involving sulfate-reducing bacteria (SRB) are promising for treating arsenic contaminated waters. However, mechanisms of biogenic As-sulfide formation need to be better understood to decontaminate AMDs in acidic conditions.
View Article and Find Full Text PDF