The interaction of some human antibodies with heme results in posttranslational acquisition of binding to various self- and pathogen-derived antigens. The previous studies on this phenomenon were performed with oxidized heme (Fe). In the present study, we elucidated the effect of other pathologically relevant species of heme, i.
View Article and Find Full Text PDFCombining adaptive and innate immunity induction modes, the repertoire of immunoglobulin M (IgM) can reflect changes in the internal environment including malignancies. Previously, it was shown that a mimotope library reflecting the public IgM repertoire of healthy donors (IgM IgOme) can be mined for efficient probes of tumor biomarker antibody reactivities. To better explore the interpretability of this approach for IgM, solid tumor-related profiles of IgM reactivities to linear epitopes of actual tumor antigens and viral epitopes were studied.
View Article and Find Full Text PDFSpecific antibody reactivities are routinely used as biomarkers, but the antibody repertoire reactivity (igome) profiles are still neglected. Here, we propose rationally designed peptide arrays as efficient probes for these system level biomarkers. Most IgM antibodies are characterized by few somatic mutations, polyspecificity, and physiological autoreactivity with housekeeping function.
View Article and Find Full Text PDFThe density and distribution pattern of epitopes at the surface of pathogens have a profound impact on immune responses. Although multiple lines of evidence highlight the significance of antigen surface density for antibody binding, a quantitative description of its effect on recognition mechanisms is missing. Here, we analyzed binding kinetics and thermodynamics of six HIV-1 neutralizing antibodies as a function of the surface density of envelope glycoprotein gp120.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2016
Polyreactive antibodies represent a considerable fraction of the immune repertoires. Some antibodies acquire polyreactivity post-translationally after interaction with various redox-active substances, including heme. Recently we have demonstrated that heme binding to a naturally polyreactive antibody (SPE7) results in a considerable broadening of the repertoire of recognized antigens.
View Article and Find Full Text PDFHealthy immune repertoire contains a fraction of immunoglobulins that do not possess exquisite antigen specificity but are able to recognize numerous unrelated antigens with similar values of the binding affinity. These antibodies are referred to as polyreactive. Besides natural polyreactive antibodies immune repertoires contain antibodies that acquire polyreactivity post-translationally, upon structural changes in their variable regions.
View Article and Find Full Text PDFA fraction of antibodies from healthy immune repertoires binds to heme and acquires the ability to recognize multiple antigens. The mechanism and functional consequences of heme-mediated antigen binding promiscuity (polyreactivity) are not understood. Here, we used SPE7, a mouse monoclonal IgE specific for dinitrophenyl that has been thoroughly characterized at the molecular level, as a model antibody to elucidate the mechanism and functional consequences of heme-mediated polyreactivity.
View Article and Find Full Text PDF