Publications by authors named "Maya F Amjadi"

Background: Autoantibodies are commonly used as biomarkers in autoimmune diseases, but there are limitations. For example, autoantibody biomarkers have poor sensitivity or specificity in systemic lupus erythematosus and do not exist in the spondyloarthropathies, impairing diagnosis and treatment. While autoantibodies suitable for strong biomarkers may not exist in these conditions, another possibility is that technology has limited their discovery.

View Article and Find Full Text PDF

Background: Empathy declines during medical training, despite its importance.

Methodology: In this randomized controlled trial, we assessed the impact of Zoom improv on medical student empathy using a concurrent mixed-methods approach. Quantitative assessment with three survey tools and qualitative assessment by content analysis of Zoom session field notes were conducted.

View Article and Find Full Text PDF
Article Synopsis
  • Rheumatoid factors (RFs) are antibodies linked to rheumatoid arthritis but can also appear in other diseases and infections, affecting immune responses.
  • Recent research identified unique linear IgG epitopes targeted by RFs in COVID-19, which differ from those found in rheumatoid arthritis, showing disease-specific immune reactions.
  • The COVID-19 RF demonstrated the ability to bind various viral peptides and IgG Fc due to a short peptide motif, suggesting potential mechanisms by which viral infections could lead to autoimmune conditions.
View Article and Find Full Text PDF

Background: The consequences of past coronavirus disease 2019 (COVID-19) infection for personal and population health are emerging, but accurately identifying distant infection is a challenge. Anti-spike antibodies rise after both vaccination and infection and anti-nucleocapsid antibodies rapidly decline.

Methods: We evaluated anti-membrane antibodies in COVID-19 naive, vaccinated, and convalescent subjects to determine if they persist and accurately detect distant infection.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) patients often develop rheumatoid factors (RFs), antibodies that bind IgG Fc, and anti-modified protein antibodies (AMPAs), multireactive autoantibodies that commonly bind citrullinated, homocitrullinated, and acetylated antigens. Recently, antibodies that bind citrulline-containing IgG epitopes were discovered in RA, suggesting that additional undiscovered IgG epitopes could exist and that IgG could be a shared antigen for RFs and AMPAs. This study was undertaken to reveal new IgG epitopes in rheumatic disease and to determine if multireactive AMPAs bind IgG.

View Article and Find Full Text PDF

The consequences of past COVID-19 infection for personal health and long-term population immunity are only starting to be revealed. Unfortunately, detecting past infection is currently a challenge, limiting clinical and research endeavors. Widely available anti-SARS-CoV-2 antibody tests cannot differentiate between past infection and vaccination given vaccine-induced anti-spike antibodies and the rapid loss of infection-induced anti-nucleocapsid antibodies.

View Article and Find Full Text PDF

Lasting immunity will be critical for overcoming COVID-19. However, the factors associated with the development of high titers of anti-SARS-CoV-2 Abs and how long those Abs persist remain incompletely defined. In particular, an understanding of the relationship between COVID-19 symptoms and anti-SARS-CoV-2 Abs is limited.

View Article and Find Full Text PDF

The search for potential antibody-based diagnostics, vaccines, and therapeutics for pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has focused almost exclusively on the spike (S) and nucleocapsid (N) proteins. Coronavirus membrane (M), ORF3a, and ORF8 proteins are humoral immunogens in other coronaviruses (CoVs) but remain largely uninvestigated for SARS-CoV-2. Here, we use ultradense peptide microarray mapping to show that SARS-CoV-2 infection induces robust antibody responses to epitopes throughout the SARS-CoV-2 proteome, particularly in M, in which 1 epitope achieved excellent diagnostic accuracy.

View Article and Find Full Text PDF

Neutrophils (PMN) regulate inflammation in many ways, including communication with other immune cells via extracellular vesicles (EVs). EVs released by human neutrophils activated with N-formylmethionyl-leucyl-phenylalanine (fMLF) (PMN-fMLF EVs) had an outside-out orientation and contained functionally important neutrophil plasma membrane proteins, including flavocytochrome b558, and enzymatically active granule proteins, elastase, and myeloperoxidase. Treatment of naïve PMN with PMN-fMLF EVs primed fMLF-stimulated NADPH oxidase activity, increased surface expression of the complement receptors CD11b/CD18 and CD35, the specific granule membrane protein CD66, and flavocytochrome b , and promoted phagocytosis of serum-opsonized Staphylococcus aureus.

View Article and Find Full Text PDF

Lasting immunity will be critical for overcoming the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, factors that drive the development of high titers of anti-SARS-CoV-2 antibodies and how long those antibodies persist remain unclear. Our objective was to comprehensively evaluate anti-SARS-CoV-2 antibodies in a clinically diverse COVID-19 convalescent cohort at defined time points to determine if anti-SARS-CoV-2 antibodies persist and to identify clinical and demographic factors that correlate with high titers.

View Article and Find Full Text PDF

The search for potential antibody-based diagnostics, vaccines, and therapeutics for pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has focused almost exclusively on the spike (S) and nucleocapsid (N) proteins. Coronavirus membrane (M), ORF3a, and ORF8 proteins are humoral immunogens in other coronaviruses (CoVs) but remain largely uninvestigated for SARS-CoV-2. Here we use ultradense peptide microarray mapping to show that SARS-CoV-2 infection induces robust antibody responses to epitopes throughout the SARS-CoV-2 proteome, particularly in M, in which one epitope achieved excellent diagnostic accuracy.

View Article and Find Full Text PDF