Publications by authors named "May Shen"

Background: Technical advances in whole tissue imaging and clearing have allowed 3D reconstruction of exocrine uterine glands deep-seated in the endometrium. However, there are limited gland structure analysis platforms to analyze these imaging data sets. Here, we present a pipeline for segmenting and analyzing uterine gland shape.

View Article and Find Full Text PDF

Uterine glands are branched, tubular structures whose secretions are essential for pregnancy success. It is known that pre-implantation glandular expression of leukemia inhibitory factor (LIF) is crucial for embryo implantation; however, the contribution of uterine gland structure to gland secretions, such as LIF, is not known. Here, we use mice deficient in estrogen receptor 1 (ESR1) signaling to uncover the role of ESR1 signaling in gland branching and the role of a branched structure in LIF secretion and embryo implantation.

View Article and Find Full Text PDF

Study Question: How does ovarian stimulation (OS), which is used to mature multiple oocytes for ART procedures, impact the principal cellular compartments and transcriptome of the human endometrium in the periovulatory and mid-secretory phases?

Summary Answer: During the mid-secretory window of implantation, OS alters the abundance of endometrial immune cells, whereas during the periovulatory period, OS substantially changes the endometrial transcriptome and impacts both endometrial glandular and immune cells.

What Is Known Already: Pregnancies conceived in an OS cycle are at risk of complications reflective of abnormal placentation and placental function. OS can alter endometrial gene expression and immune cell populations.

View Article and Find Full Text PDF

Uterine glands are branched, tubular structures whose secretions are essential for pregnancy success. It is known that pre-implantation glandular expression of leukemia inhibitory factor (LIF) is crucial for embryo implantation, however contribution of uterine gland structure to gland secretions such as LIF is not known. Here we use mice deficient in estrogen receptor 1 (ESR1) signaling to uncover the role of ESR1 signaling in gland branching and the role of a branched structure in LIF secretion and embryo implantation.

View Article and Find Full Text PDF