A rise in demand for disposable consumer electronics such as smart packaging, wearable electronics, and single-use point-of-source sensors requires the development of eco-friendly and compostable electronic materials. Chitosan is derived from crustacean waste and offers high dielectric constant values without requiring rigorous purification, making it sustainable for large-scale electronic device manufacturing. When processed in acidic media, the protonated backbone of chitosan pairs with counterions from the acid dissociation to form chitosan thin films with electrical double layers (EDLs) and tunable capacitive properties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
Introduction of amidine groups within the side chains of a conjugated polyfluorene was carried out using copper-catalyzed azide-alkyne cycloaddition. The resulting polymer was shown to form strong supramolecular interactions with the sidewalls of single-walled carbon nanotubes (SWNTs), forming polymer-nanotube complexes that exhibited solubility in various organic solvents. It was shown that the polymer-SWNT complexes were responsive to CO, where the amidine groups formed amidinium bicarbonate salts upon CO exposure, causing the polymer-SWNT complexes to precipitate.
View Article and Find Full Text PDFAutomation is vital to accelerating research. In recent years, the application of self-driving labs to materials discovery and device optimization has highlighted many benefits and challenges inherent to these new technologies. Successful automated workflows offer tangible benefits to fundamental science and industrial scale-up by significantly increasing productivity and reproducibility all while enabling entirely new types of experiments.
View Article and Find Full Text PDFIn this paper, we report the design and synthesis of three naphthalene diimide- (NDI) and anthraquinone- (AQ) based organic chromophores derived from direct arylation reactions; NDI-AQ, AQ-NDI-AQ and NDI-AQ-NDI. Compared to classic cross-coupling reactions, this method reduced the number of synthetic and purification steps. The chemical structures, photophysical and electrochemical properties of these molecules were characterized using UV-vis spectroscopy, fluorescence emission spectroscopy and cyclic voltammetry (CV).
View Article and Find Full Text PDF