FlhA is the largest integral membrane component of the flagellar type III protein export apparatus of Salmonella and is composed of an N-terminal transmembrane domain (FlhA(TM)) and a C-terminal cytoplasmic domain (FlhA(C)). FlhA(C) is thought to form a platform of the export gate for the soluble components to bind to for efficient delivery of export substrates to the gate. Here, we report a structure of FlhA(C) at 2.
View Article and Find Full Text PDFFor construction of the bacterial flagellum, many of the flagellar proteins are exported into the central channel of the flagellar structure by the flagellar type III protein export apparatus. FlhA and FlhB, which are integral membrane proteins of the export apparatus, form a docking platform for the soluble components of the export apparatus, FliH, FliI, and FliJ. The C-terminal cytoplasmic domain of FlhA (FlhA(C)) is required for protein export, but it is not clear how it works.
View Article and Find Full Text PDFFliI, the ATPase involved in bacterial flagellar protein export, forms a complex with its regulator FliH in the cytoplasm and hexamerizes upon docking to the export gate composed of integral membrane proteins. The extreme N-terminal region of FliI is involved not only in its interaction with FliH but also in its oligomerization, but the regulatory mechanism of oligomerization remains unclear. Using in-frame 10-residue deletions within the 100 residues of the N-terminal domain, we demonstrate that the first 20 residues are required for FliH binding and that the conformation of the N-terminal domain is sensitive to the export function, even though the oligomerization and FliH-binding ability are retained and the ATPase activity is maintained in most of the deletion variants.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
October 2006
Most of the structural components making up the bacterial flagellum are translocated through the central channel of the growing flagellar structure by the type III flagellar protein-export apparatus in an ATPase-driven manner and are assembled at the growing end. FliI is the ATPase that drives flagellar protein export using the energy of ATP hydrolysis. FliI forms an oligomeric ring structure in order to attain maximum ATPase activity.
View Article and Find Full Text PDFThe switch in export specificity of the type III flagellar protein export apparatus from rod/hook type to filament type is believed to occur upon completion of hook assembly by way of an interaction of the type III secretion substrate specificity switch (T3S4) domain of the hook-length control protein FliK, with the integral membrane export apparatus component FlhB. The T3S4 domain of FliK (FliKT3S4) consisting of amino acid residues 265-405 has an unstable and flexible conformation in its last 35 residues (FliKCT). To investigate the role of FliKT3S4 in substrate specificity switching, we studied the effect of deletions and point mutations within this domain and characterized suppressor mutations.
View Article and Find Full Text PDFSalmonella FliI is the flagellar ATPase which converts the energy of ATP hydrolysis into the export of flagellar proteins. It forms a ring-shaped oligomer in the presence of ATP, its analogs, or phospholipids. The extreme N-terminal region of FliI has an unstable conformation and is responsible for the interaction with other components of the export apparatus and for regulation of the catalytic mechanism.
View Article and Find Full Text PDFThe flagellar switch proteins of Salmonella, FliG, FliM and FliN, participate in the switching of motor rotation, torque generation and flagellar assembly/export. FliN has been implicated in the flagellar export process. To address this possibility, we constructed 10-amino-acid scanning deletions and larger truncations over the C-terminal domain of FliN.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
June 2005
The axial components of the bacterial flagellum and the scaffolding proteins for its assembly are exported through the flagellar-specific type III protein-export apparatus, which is believed to be located on the cytoplasmic surface of the basal body. FlhA is an essential component of the type III export apparatus of Salmonella and consists of two major portions: an N-terminal transmembrane domain and a C-terminal cytoplasmic domain (FlhAC). FlhAC and a 38 kDa fragment of FlhAC (FlhAC38K) were purified and crystallized.
View Article and Find Full Text PDFThe bacterial flagellum is a predominantly cell-external super-macromolecular construction whose structural components are exported by a flagellum-specific export apparatus. One of the export apparatus proteins, FlhB, regulates the substrate specificity of the entire apparatus; i.e.
View Article and Find Full Text PDFMost flagellar proteins are exported via a type III export apparatus which, in part, consists of the membrane proteins FlhA, FlhB, FliO, FliP, FliQ, and FliR and is housed within the membrane-supramembrane ring formed by FliF subunits. Salmonella FlhA is a 692-residue integral membrane protein with eight predicted transmembrane spans. Its function is not understood, but it is necessary for flagellar export.
View Article and Find Full Text PDFSalmonella FliR and FlhB are membrane proteins necessary for flagellar export. In Clostridium a fliR-flhB fusion gene exists. We constructed a similar Salmonella fusion gene which is able to complement fliR, flhB, and fliR flhB null strains.
View Article and Find Full Text PDFSalmonella FliI is the ATPase that drives flagellar protein export. It normally exists as a complex together with the regulatory protein FliH. A fliH null mutant was slightly motile, with overproduction of FliI resulting in substantial improvement of its motility.
View Article and Find Full Text PDFFlhB, an integral membrane protein, gates the type III flagellar export pathway of Salmonella. It permits export of rod/hook-type proteins before hook completion, whereupon it switches specificity to recognize filament-type proteins. The cytoplasmic C-terminal domain of FlhB (FlhBC) is cleaved between Asn-269 and Pro-270, defining two subdomains: FlhBCN and FlhBCC.
View Article and Find Full Text PDF