Monolithic integration of III-V quantum dot (QD) lasers onto a Si substrate is a scalable and reliable approach for obtaining highly efficient light sources for Si photonics. Recently, a combination of optimized GaAs buffers and QD gain materials resulted in monolithically integrated butt-coupled lasers on Si. However, the use of thick GaAs buffers up to 3 μm not only hinders accurate vertical alignment to the Si optical waveguide but also imposes considerable growth costs and time constraints.
View Article and Find Full Text PDFFabrication of high quantum efficiency nanoscale device is challenging due to increased carrier loss at surface. Low dimensional materials such 0D quantum dots and 2D materials have been widely studied to mitigate the loss. Here, we demonstrate a strong photoluminescence enhancement from graphene/III-V quantum dot mixed-dimensional heterostructures.
View Article and Find Full Text PDFWe demonstrate that a planar single-walled carbon nanotube (SWCNT) film bolometer can exhibit enhanced thermal and optical properties. The SWCNT film were ink-printed on an oxidized silicon substrate between two pointed-tip Au electrodes across a gap of approximately 10 μm. We obtained a bolometer figure-of-merit temperature coefficient of resistance of greater than -3.
View Article and Find Full Text PDF