Publications by authors named "Maxwell Z Wilson"

Deep learning approaches have been increasingly applied to the discovery of novel chemical compounds. These predictive approaches can accurately model compounds and increase true discovery rates, but they are typically black box in nature and do not generate specific chemical insights. Explainable deep learning aims to 'open up' the black box by providing generalizable and human-understandable reasoning for model predictions.

View Article and Find Full Text PDF

Human gastrulation is a critical stage of development where many pregnancies fail due to poorly understood mechanisms. Using the 2D gastruloid, a stem cell model of human gastrulation, we combined high-throughput drug perturbations and mathematical modelling to create an explainable map of gastruloid morphospace. This map outlines patterning outcomes in response to diverse perturbations and identifies variations in canonical patterning and failure modes.

View Article and Find Full Text PDF

Macrophages measure the "eat-me" signal immunoglobulin G (IgG) to identify targets for phagocytosis. We tested whether prior encounters with IgG influence macrophage appetite. IgG is recognized by the Fc receptor.

View Article and Find Full Text PDF

We present field-domain rapid-scan (RS) electron paramagnetic resonance (EPR) at 8.6T and 240GHz. To enable this technique, we upgraded a home-built EPR spectrometer with an FPGA-enabled digitizer and real-time processing software.

View Article and Find Full Text PDF

Hypertrophy Cardiomyopathy (HCM) is the most prevalent hereditary cardiovascular disease - affecting >1:500 individuals. Advanced forms of HCM clinically present with hypercontractility, hypertrophy and fibrosis. Several single-point mutations in b-myosin heavy chain (MYH7) have been associated with HCM and increased contractility at the organ level.

View Article and Find Full Text PDF

Macrophages measure the 'eat-me' signal IgG to identify targets for phagocytosis. We wondered if prior encounters with IgG influence macrophage appetite. IgG is recognized by the Fc Receptor.

View Article and Find Full Text PDF

Strategies that mimic the spatial complexity of natural tissues can provide cellular scaffolds to probe fundamental questions in cell biology and offer new materials for regenerative medicine. Here, the authors demonstrate a light-guided patterning platform that uses natural engineered extracellular matrix (ECM) proteins as a substrate to program cellular behaviors. A photocaged diene which undergoes Diels-Alder-based click chemistry upon uncaging with 365 nm light is utilized.

View Article and Find Full Text PDF

The integrated stress response (ISR) is a conserved signaling network that detects aberrations and computes cellular responses. Dissecting these computations has been difficult because physical and chemical inducers of stress activate multiple parallel pathways. To overcome this challenge, we engineered a photo-switchable control over the ISR sensor kinase PKR (opto-PKR), enabling virtual, on-target activation.

View Article and Find Full Text PDF

Spatiotemporally functionalized hydrogels have exciting applications in tissue engineering, but their preparation often relies on radical-based strategies that can be deleterious in biological settings. Herein, the computationally guided design, synthesis, and application of a water-soluble cyclopentadienone-norbornadiene (CPD-NBD) adduct is disclosed as a diene photocage for radical-free Diels-Alder photopatterning. We show that this scalable CPD-NBD derivative is readily incorporated into hydrogel formulations, providing gels that can be patterned with dienophiles upon 365 nm uncaging of cyclopentadiene.

View Article and Find Full Text PDF
Article Synopsis
  • Time-resolved Gd-Gd electron paramagnetic resonance (TiGGER) is introduced as a method for measuring inter-residue distances in proteins during their mechanical cycles at 240 GHz.
  • The technique utilizes Gd-sTPATCN spin labels, offering advantages like a spin-7/2 EPR-active center and low anisotropy, making it more effective than conventional nitroxide labels.
  • TiGGER findings revealed that in the protein AsLOV2, light activation causes rapid separation of its termini in under a second, with a recovery to equilibrium occurring over about 60 seconds, and changes in motion were observed in a variant of the protein, linking it to chromophore behavior.
View Article and Find Full Text PDF

Wnt signal transduction is controlled by the destruction complex (DC), a condensate comprising scaffold proteins and kinases that regulate β-catenin stability. Overexpressed DC scaffolds undergo liquid-liquid phase separation (LLPS), but DC mesoscale organization at endogenous expression levels and its role in β-catenin processing were previously unknown. Here, we find that DC LLPS is nucleated by the centrosome.

View Article and Find Full Text PDF

We review fundamental mechanisms and applications of OptoGels: hydrogels with light-programmable properties endowed by photoswitchable proteins ("optoproteins") found in nature. Light, as the primary source of energy on earth, has driven evolution to develop highly-tuned functionalities, such as phototropism and circadian entrainment. These functions are mediated through a growing family of optoproteins that respond to the entire visible spectrum ranging from ultraviolet to infrared by changing their structure to transmit signals inside of cells.

View Article and Find Full Text PDF

The double-stranded RNA sensor kinase PKR is one of four integrated stress response (ISR) sensor kinases that phosphorylate the α subunit of eukaryotic initiation factor 2 (eIF2α) in response to stress. The current model of PKR activation considers the formation of back-to-back PKR dimers as a prerequisite for signal propagation. Here we show that PKR signaling involves the assembly of dynamic PKR clusters.

View Article and Find Full Text PDF

The COVID-19 pandemic has taken a devastating human toll worldwide. The development of impactful guidelines and measures for controlling the COVID-19 pandemic requires continuous and widespread testing of suspected cases and their contacts through accurate, accessible, and reliable methods for SARS-CoV-2 detection. Here we describe a CRISPR-Cas13-based method for the detection of SARS-CoV-2.

View Article and Find Full Text PDF

m6A methylation is the most abundant and reversible chemical modification on mRNA with approximately one-fourth of eukaryotic mRNAs harboring at least one m6A-modified base. The recruitment of the mRNA m6A methyltransferase writer complex to phase-separated nuclear speckles is likely to be crucial in its regulation; however, control over the activity of the complex remains unclear. Supported by our observation that a core catalytic subunit of the methyltransferase complex, METTL3, is endogenously colocalized within nuclear speckles as well as in noncolocalized puncta, we tracked the components of the complex with a Cry2-METTL3 fusion construct to disentangle key domains and interactions necessary for the phase separation of METTL3.

View Article and Find Full Text PDF

The marine alpha-proteobacterium Phaeobacter inhibens engages in intermittent symbioses with microalgae. The symbiosis is biphasic and concludes in a parasitic phase, during which the bacteria release algaecidal metabolites in response to algal p-coumaric acid (pCA). The cell-wide effects of pCA on P.

View Article and Find Full Text PDF

A new Diels-Alder (DA)-based photopatterning platform is presented, which exploits the irreversible, light-induced decarbonylation and subsequent cleavage of cyclopentadienone-norbornadiene (CPD-NBD) adducts. A series of CPD-NBD adducts have been prepared and systematically studied toward the use in a polymeric material photopatterning platform. By incorporating an optimized CPD-NBD adduct into polymer networks, it is demonstrated that cyclopentadiene may be unveiled upon 365 nm irradiation and subsequently clicked to a variety of maleimides with spatial control under mild reaction conditions and with fast kinetics.

View Article and Find Full Text PDF

Importance: The reopening of colleges and universities in the US during the coronavirus disease 2019 (COVID-19) pandemic is a significant public health challenge. The development of accessible and practical approaches for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection in the college population is paramount for deploying recurrent surveillance testing as an essential strategy for virus detection, containment, and mitigation.

Objective: To determine the prevalence of SARS-CoV-2 in asymptomatic participants in a university community by using CREST (Cas13-based, rugged, equitable, scalable testing), a CRISPR-based test developed for accessible and large-scale viral screening.

View Article and Find Full Text PDF

The COVID-19 pandemic has created massive demand for widespread, distributed tools for detecting SARS-CoV-2 genetic material. The hurdles to scalable testing include reagent and instrument accessibility, availability of highly trained personnel, and large upfront investment. Here, we showcase an orthogonal pipeline we call CREST (Cas13-based, rugged, equitable, scalable testing) that addresses some of these hurdles.

View Article and Find Full Text PDF

Liquid-liquid phase separation (LLPS) represents a major physiochemical principle to organize intracellular membrane-less structures. Studies with non-segmented negative-sense (NNS) RNA viruses have uncovered a key role of LLPS in the formation of viral inclusion bodies (IBs), sites of viral protein concentration in the cytoplasm of infected cells. These studies further reveal the structural and functional complexity of viral IB factories and provide a foundation for their future research.

View Article and Find Full Text PDF

The extracellular matrix (ECM) comprises a meshwork of biomacromolecules whose composition, architecture, and macroscopic properties, such as mechanics, instruct cell fate decisions during development and disease progression. Current methods implemented in mechanotransduction studies either fail to capture real-time mechanical dynamics or utilize synthetic polymers that lack the fibrillar nature of their natural counterparts. Here we present an optogenetic-inspired tool to construct light-responsive ECM mimetic hydrogels comprised exclusively of natural ECM proteins.

View Article and Find Full Text PDF

Management of the coronavirus disease 2019 (COVID-19) pandemic requires widespread testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A main limitation for widespread SARS-CoV-2 testing is the global shortage of essential supplies, among them RNA extraction kits. The need for commercial RNA extraction kits places a bottleneck on tests that detect SARS-CoV-2 genetic material, including PCR-based reference tests.

View Article and Find Full Text PDF

The SARS-CoV-2 global pandemic will disproportionately impact countries with weak economies and vulnerable populations including people with dementia. Latin American and Caribbean countries (LACs) are burdened with unstable economic development, fragile health systems, massive economic disparities, and a high prevalence of dementia. Here, we underscore the selective impact of SARS-CoV-2 on dementia among LACs, the specific strain on health systems devoted to dementia, and the subsequent effect of increasing inequalities among those with dementia in the region.

View Article and Find Full Text PDF

Tau protein in vitro can undergo liquid-liquid phase separation (LLPS); however, observations of this phase transition in living cells are limited. To investigate protein state transitions in living cells, we attached Cry2 to Tau and studied the contribution of each domain that drives the Tau cluster in living cells. Surprisingly, the proline-rich domain (PRD), not the microtubule binding domain (MTBD), drives LLPS and does so under the control of its phosphorylation state.

View Article and Find Full Text PDF