Fluorescent labeling of proteins is a critical requirement for single-molecule imaging studies. Many protein labeling strategies require harsh conditions or large epitopes that can inactivate the target protein, either by decreasing the protein's enzymatic activity or by blocking protein-protein interactions. Here, we provide a detailed protocol to efficiently label CRISPR-Cas complexes with a small fluorescent peptide via sortase-mediated transpeptidation.
View Article and Find Full Text PDFCRISPR-Cas systems confer an adaptive immunity against viruses. Following viral injection, Cas1-Cas2 integrates segments of the viral genome (spacers) into the CRISPR locus. In type I CRISPR-Cas systems, efficient "primed" spacer acquisition and viral degradation (interference) require both the Cascade complex and the Cas3 helicase/nuclease.
View Article and Find Full Text PDFDNA-binding proteins search for specific targets via facilitated diffusion along a crowded genome. However, little is known about how crowded DNA modulates facilitated diffusion and target recognition. Here we use DNA curtains and single-molecule fluorescence imaging to investigate how Msh2-Msh3, a eukaryotic mismatch repair complex, navigates on crowded DNA.
View Article and Find Full Text PDF