Unlabelled: Myocardial hypoxia is an attractive target for diagnostic and prognostic imaging, but current approaches are insufficiently sensitive for clinical use. The PET tracer copper(II)-diacetyl-bis(N4-methylthiosemicarbazone) ((64)Cu-ATSM) has promise, but its selectivity and sensitivity could be improved by structural modification. We have therefore evaluated a range of (64)Cu-ATSM analogs for imaging hypoxic myocardium.
View Article and Find Full Text PDFObjective: We have designed a low-cost, reusable incubation system that allows cells to be cultured in either plated or suspension culture under complete atmospheric control for radiotracer characterization. We demonstrate its utility here in the first quantification of the hypoxia-dependent accumulation of Cu-diacetyl bis(N4-methylthiosemicarbazone) (Cu-ATSM) in adult rat ventricular myocytes (ARVMs).
Materials And Methods: ARVMs were allowed to adhere overnight in 9 cm culture plates (2×10 cells/dish) or were used in suspension culture, placed inside the chamber and equilibrated with either oxic (95 or 21% O₂/5% CO₂) or anoxic gas (95% N₂/5% CO₂).