Many applications of transition metal dichalcogenides (TMDs) involve transfer to functional substrates that can strongly impact their optical and electronic properties. We investigate the impact that substrate interactions have on free carrier densities and defect-related excitonic (X) emission from MoS monolayers grown by metal-organic chemical vapor deposition. C-plane sapphire substrates mimic common hydroxyl-terminated substrates.
View Article and Find Full Text PDFSubstitutionally doped 2D transition metal dichalcogenides are primed for next-generation device applications such as field effect transistors (FET), sensors, and optoelectronic circuits. In this work, we demonstrate substitutional rhenium (Re) doping of MoS monolayers with controllable concentrations down to 500 ppm by metal-organic chemical vapor deposition (MOCVD). Surprisingly, we discover that even trace amounts of Re lead to a reduction in sulfur site defect density by 5-10×.
View Article and Find Full Text PDF