Publications by authors named "Maxine L Linial"

Foamy viruses (FVs), also known as spumaretroviruses, are complex retroviruses that are seemingly nonpathogenic in natural hosts. In natural hosts, which include felines, bovines, and nonhuman primates (NHPs), a large percentage of adults are infected with FVs. For this reason, the effect of FVs on infections with other viruses (co-infections) cannot be easily studied in natural populations.

View Article and Find Full Text PDF

Spumaretroviruses, commonly referred to as foamy viruses, are complex retroviruses belonging to the subfamily Spumaretrovirinae, family Retroviridae, which naturally infect a variety of animals including nonhuman primates (NHPs). Additionally, cross-species transmissions of simian foamy viruses (SFVs) to humans have occurred following exposure to tissues of infected NHPs. Recent research has led to the identification of previously unknown exogenous foamy viruses, and to the discovery of endogenous spumaretrovirus sequences in a variety of host genomes.

View Article and Find Full Text PDF

Background: Foamy viruses (FV) are ancient complex retroviruses that differ from orthoretroviruses such as human immunodeficiency virus (HIV) and murine leukemia virus (MLV) and comprise a distinct subfamily of retroviruses, the Spumaretrovirinae. FV are ubiquitous in their natural hosts, which include cows, cats, and nonhuman primates (NHP). FV are transmitted mainly through saliva and appear nonpathogenic by themselves, but they may increase morbidity of other pathogens in coinfections.

View Article and Find Full Text PDF

Simian foamy viruses (SVF) are ubiquitous in nonhuman primates (NHP). SFV can be zoonotically transmitted to humans who either work with or live commensally with NHP. We analyzed the blood of 45 Bangladeshi performing monkey owners (an ethnic group called the Bedey) for SFV infection.

View Article and Find Full Text PDF

Simian Foamy Virus (SFV) can be transmitted from non-human primates (NHP) to humans. However, there are no documented cases of human to human transmission, and significant differences exist between infection in NHP and human hosts. The mechanism for these between-host differences is not completely understood.

View Article and Find Full Text PDF

Foamy viruses (FV) are complex retroviruses that naturally infect all nonhuman primates (NHP) studied to date. Zoonotic transmission of Old World NHP simian foamy viruses (SFV) has been documented, leading to nonpathogenic persistent infections. To date, there have been no reports concerning zoonotic transmission of New World monkey (NWM) SFV to humans and resulting infection.

View Article and Find Full Text PDF

Simian foamy viruses (SFV) are complex retroviruses that are ubiquitous in nonhuman primates (NHP) and are zoonotically transmitted to humans, presumably through NHP saliva, by licking, biting, and other behaviors. We have studied SFV in free-ranging rhesus macaques in Bangladesh. It has been previously shown that SFV in immunocompetent animals replicates to detectable levels only in superficial epithelial cells of the oral mucosa, although latent proviruses are found in most, if not all, tissues.

View Article and Find Full Text PDF

Simian foamy viruses (SFVs) are ubiquitous in non-human primates (NHPs). As in all retroviruses, reverse transcription of SFV leads to recombination and mutation. Because more humans have been shown to be infected with SFV than with any other simian borne virus, SFV is a potentially powerful model for studying the virology and epidemiology of viruses at the human/NHP interface.

View Article and Find Full Text PDF

Foamy viruses are complex retroviruses that have been shown to be transmitted from nonhuman primates to humans. In Bangladesh, infection with simian foamy virus (SFV) is ubiquitous among rhesus macaques, which come into contact with humans in diverse locations and contexts throughout the country. We analyzed microsatellite DNA from 126 macaques at six sites in Bangladesh in order to characterize geographic patterns of macaque population structure.

View Article and Find Full Text PDF

Foamy viruses (FVs) differ from all other genera of retroviruses (orthoretroviruses) in many aspects of viral replication. In this review, we discuss FV assembly, with special emphasis on Pol incorporation. FV assembly takes place intracellularly, near the pericentriolar region, at a site similar to that used by betaretroviruses.

View Article and Find Full Text PDF

Foamy viruses are retroviruses whose Pol protein is synthesized without Gag from a spliced mRNA. Unlike orthoretroviruses, reverse transcription occurs during viral assembly, leading to DNA-containing virions. When prototype foamy virus Pol is expressed as an orthoretroviral-like Gag-Pol fusion protein, reverse transcription also occurs late in viral replication, as measured by the timing of reverse transcriptase sensitivity to the inhibitor 3'-azido-3'deoxythymidine (AZT).

View Article and Find Full Text PDF

Foamy viruses (FV) synthesize Pol from a spliced pol mRNA independently of Gag, unlike orthoretroviruses, which synthesize Pol as a Gag-Pol protein that coassembles with Gag. We found that prototype FV (PFV) mutants expressing Gag and Pol only as a Gag-Pol protein without the spliced Pol contain protease activity equivalent to that of wild-type (WT) Pol. Regardless of the presence or absence of the spliced Pol, the PFV Gag-Pol proteins can assemble into virus-like particles (VLPs), in contrast to the orthoretroviral Gag-Pol proteins, which cannot form VLPs.

View Article and Find Full Text PDF

Viruses have to encapsidate their own genomes during the assembly process. For most RNA viruses, there are sequences within the viral RNA and virion proteins needed for high efficiency of genome encapsidation. However, the roles of host proteins in this process are not understood.

View Article and Find Full Text PDF

Unlike orthoretroviruses, foamy retroviruses (FV) synthesize Pol independently of Gag. The FV Pol precursor is cleaved only once between reverse transcriptase (RT) and integrase (IN) by the protease (PR), resulting in a PR-RT and an IN protein. Only the Pol precursor, not the cleaved subunits, is packaged into virions.

View Article and Find Full Text PDF

Foamy viruses (FV) differ from orthoretroviruses in many aspects of their replication cycle. A major difference is in the mode of Pol expression, regulation, and encapsidation into virions. Orthoretroviruses synthesize Pol as a Gag-Pol fusion protein so that Pol is encapsidated into virus particles through Gag assembly domains.

View Article and Find Full Text PDF

In Asia, contact between persons and nonhuman primates is widespread in multiple occupational and nonoccupational contexts. Simian foamy viruses (SFVs) are retroviruses that are prevalent in all species of nonhuman primates. To determine SFV prevalence in humans, we tested 305 persons who lived or worked around nonhuman primates in several South and Southeast Asian countries; 8 (2.

View Article and Find Full Text PDF

Foamy viruses (FVs) assemble using pathways distinct from those of orthoretroviruses. FV capsid assembly takes place near the host microtubule-organizing center (MTOC). Assembled capsids then migrate by an unknown mechanism to the trans-Golgi network to colocalize with the FV glycoprotein, Env.

View Article and Find Full Text PDF

Foamy viruses (FVs) are ancient retroviruses that are ubiquitous in nonhuman primates (NHPs). While FVs share many features with pathogenic retroviruses, such as human immunodeficiency virus, FV infections of their primate hosts have no apparent pathological consequences. Paradoxically, FV infections of many cell types in vitro are rapidly cytopathic.

View Article and Find Full Text PDF

Foamy viruses (FV) comprise a subfamily of retroviruses. Orthoretroviruses, such as human immunodeficiency virus type 1, synthesize Gag and Pol from unspliced genomic RNA. However, FV Pol is expressed from a spliced mRNA independently of Gag.

View Article and Find Full Text PDF

We compared the in vitro fidelity of wild-type human immunodeficiency virus type-1 (HIV-1) reverse transcriptase (RT) and the prototype foamy virus (PFV) RT. Both enzymes had similar error rates for single nucleotide substitutions; however, PFV RT did not appear to make errors at specific hotspots, like HIV-1 RT. In addition, PFV RT made more deletions and insertions than HIV-1 RT.

View Article and Find Full Text PDF

Foamy viruses (FV) are retroviruses that naturally infect many hosts, including most nonhuman primates (NHPs). Zoonotic infection by primate FV has been documented in people in Asia who reported contact with free-ranging macaques. FV transmission in Asia is a concern, given abundant human-NHP contact, particularly at monkey temples and in urban settings.

View Article and Find Full Text PDF

Foamy virus Pol precursor protein processing by the viral protease occurs at only one site, releasing a protease-reverse transcriptase and an integrase protein. To examine whether the cleavage of the Pol precursor protein is necessary for enzymatic activities and efficient viral replication, several mutations were generated around the cleavage site. All cleavage site mutants synthesize wild-type levels of Pol precursor protein.

View Article and Find Full Text PDF

Foamy viruses (FV) are unusual retroviruses that differ in many aspects of their life cycle from the orthoretroviruses such as human immunodeficiency virus. Similar to Mason-Pfizer monkey virus (MPMV), FV assemble into capsids intracellularly. The capsids are then transported to a cellular membrane for acquisition of envelope (Env) glycoproteins and budding.

View Article and Find Full Text PDF