The development of nanoribbon-like structures is an effective strategy to harness the potential benefits of graphenic materials due to their excellent electrical properties, advantageous edge sites, rapid electron transport, and large specific area. Herein, parallel and connected magnetic nanostructured nanoribbons are obtained through the synthesis of reduced graphene oxide (rGO) using NiCl as a precursor with potential applications in nascent electronic and magnetic devices. Several analytical techniques have been used for the thorough characterization of the modified surfaces.
View Article and Find Full Text PDFBisphenol A (BPA) has been classified as an endocrine-disrupting substance that may cause adverse effects on human health and the environment. The development of simple and sensitive electrochemical biosensors is crucial for the rapid and effective quantitative determination of BPA. This work presents a study on electrochemical sensors utilizing gold nanoparticle-modified multi-walled carbon nanotubes (CNT/AuNPs).
View Article and Find Full Text PDFThe increasing demand for raising the reliability of electronic contacts has led to the development of methods that protect metal surfaces against atmospheric corrosion agents. This severe problem implies an important economic cost annually but small amounts of corrosion inhibitors can control, decrease or avoid reactions between a metal and its environment. In this regard, surfactant inhibitors have displayed many advantages such as low price, easy fabrication, low toxicity and high inhibition efficiency.
View Article and Find Full Text PDF