Episodic memory (EM) alterations are a hallmark of Alzheimer's disease (AD). We assessed EM longitudinally in cognitively normal elders at-risk for AD (with subjective memory complaints), as a function of amyloid-β (Aβ) burden, neurodegeneration (N), and progression to prodromal AD. We stratified 264 INSIGHT-preAD study subjects in controls (Aβ-/N-), stable/N- or N + (Aβ +), and progressors/N- or N + (Aβ +) groups (progressors were included only until AD-diagnosis).
View Article and Find Full Text PDFPsychological time is influenced by multiple factors such as arousal, emotion, attention and memory. While laboratory observations are well documented, it remains unclear whether cognitive effects on time perception replicate in real-life settings. This study exploits a set of data collected online during the Covid-19 pandemic, where participants completed a verbal working memory (WM) task in which their cognitive load was manipulated using a parametric n-back (1-back, 3-back).
View Article and Find Full Text PDFNeuroscience research has expanded dramatically over the past 30 years by advancing standardization and tool development to support rigor and transparency. Consequently, the complexity of the data pipeline has also increased, hindering access to FAIR data analysis to portions of the worldwide research community. was developed to reduce these burdens and democratize modern neuroscience research across institutions and career levels.
View Article and Find Full Text PDFThe COVID-19 pandemic and associated lockdowns triggered worldwide changes in the daily routines of human experience. The Blursday database provides repeated measures of subjective time and related processes from participants in nine countries tested on 14 questionnaires and 15 behavioural tasks during the COVID-19 pandemic. A total of 2,840 participants completed at least one task, and 439 participants completed all tasks in the first session.
View Article and Find Full Text PDFGood scientific practice (GSP) refers to both explicit and implicit rules, recommendations, and guidelines that help scientists to produce work that is of the highest quality at any given time, and to efficiently share that work with the community for further scrutiny or utilization. For experimental research using magneto- and electroencephalography (MEEG), GSP includes specific standards and guidelines for technical competence, which are periodically updated and adapted to new findings. However, GSP also needs to be regularly revisited in a broader light.
View Article and Find Full Text PDFWe know surprisingly little on how heartbeat-evoked responses (HERs) vary with cardiac parameters. Here, we measured both stroke volume, or volume of blood ejected at each heartbeat, with impedance cardiography, and HER amplitude with magneto-encephalography, in 21 male and female participants at rest with eyes open. We observed that HER co-fluctuates with stroke volume on a beat-to-beat basis, but only when no correction for cardiac artifact was performed.
View Article and Find Full Text PDFStatistical power is key for robust, replicable science. Here, we systematically explored how numbers of trials and subjects affect statistical power in MEG sensor-level data. More specifically, we simulated "experiments" using the MEG resting-state dataset of the Human Connectome Project (HCP).
View Article and Find Full Text PDFThe development of the Brain Imaging Data Structure (BIDS; Gorgolewski et al., 2016) gave the neuroscientific community a standard to organize and share data. BIDS prescribes file naming conventions and a folder structure to store data in a set of already existing file formats.
View Article and Find Full Text PDFBrain regions that process affect are strongly connected with visual regions, but the functional consequences of this structural organization have been relatively unexplored. How does the momentary affect of an observer influence perception? We induced either pleasant or unpleasant affect in participants and then recorded their neural activity using magnetoencephalography while they completed an object recognition task. We hypothesized, and found, that affect influenced the speed of object recognition by modulating the speed and amplitude of evoked responses in occipitotemporal cortex and regions important for representing affect.
View Article and Find Full Text PDFUnlabelled: The brain exhibits organized fluctuations of neural activity, even in the absence of tasks or sensory input. A prominent type of such spontaneous activity is the alpha rhythm, which influences perception and interacts with other ongoing neural activity. It is currently hypothesized that states of decreased prestimulus α oscillations indicate enhanced neural excitability, resulting in improved perceptual acuity.
View Article and Find Full Text PDFBackground: Electroencephalographic data are easily contaminated by signals of non-neural origin. Independent component analysis (ICA) can help correct EEG data for such artifacts. Artifact independent components (ICs) can be identified by experts via visual inspection.
View Article and Find Full Text PDFIn this study, we used EEG to investigate how visual stimulus dynamics (i.e. flicker) affect the mechanisms of duration perception.
View Article and Find Full Text PDFThe cerebral cortex responds to stimuli of a wide range of intensities. Previous studies have demonstrated that undetectably weak somatosensory stimuli cause a functional deactivation or inhibition in somatosensory cortex. In the present study, we tested whether invisible visual stimuli lead to similar responses, indicated by an increase in EEG alpha-band power-an index of cortical excitability.
View Article and Find Full Text PDFJ Cogn Neurosci
November 2014
The ongoing state of the brain radically affects how it processes sensory information. How does this ongoing brain activity interact with the processing of external stimuli? Spontaneous oscillations in the alpha range are thought to inhibit sensory processing, but little is known about the psychophysical mechanisms of this inhibition. We recorded ongoing brain activity with EEG while human observers performed a visual detection task with stimuli of different contrast intensities.
View Article and Find Full Text PDFPredicting upcoming events from incomplete information is an essential brain function. The orbitofrontal cortex (OFC) plays a critical role in this process by facilitating recognition of sensory inputs via predictive feedback to sensory cortices. In the visual domain, the OFC is engaged by low spatial frequency (LSF) and magnocellular-biased inputs, but beyond this, we know little about the information content required to activate it.
View Article and Find Full Text PDFSemantic processing of verbal and visual stimuli has been investigated in semantic violation or semantic priming paradigms in which a stimulus is either related or unrelated to a previously established semantic context. A hallmark of semantic priming is the N400 event-related potential (ERP)--a deflection of the ERP that is more negative for semantically unrelated target stimuli. The majority of studies investigating the N400 and semantic integration have used verbal material (words or sentences), and standardized stimulus sets with norms for semantic relatedness have been published for verbal but not for visual material.
View Article and Find Full Text PDFObjects are more easily recognized in their typical context. However, is contextual information activated early enough to facilitate the perception of individual objects, or is contextual facilitation caused by postperceptual mechanisms? To elucidate this issue, we first need to study the temporal dynamics and neural interactions associated with contextual processing. Studies have shown that the contextual network consists of the parahippocampal, retrosplenial, and medial prefrontal cortices.
View Article and Find Full Text PDFMemory and perception are two tightly interrelated cognitive processes, but the neural level of their interaction remains a matter of debate. Proponents of a late interaction emphasize feedback memory effects on visual processing, whereas others suggest that feed forward processing is affected by memory. In the visual domain, unconscious memory for stable relations among objects is known to influence visually-guided behavior.
View Article and Find Full Text PDFOscillatory synchrony in the gamma band (30-120 Hz) has been involved in various cognitive functions including conscious perception and learning. Explicit memory encoding, in particular, relies on enhanced gamma oscillations. Does this finding extend to unconscious memory encoding? Can we dissociate gamma oscillations related to unconscious learning and to conscious perception? We investigate these issues in a magnetoencephalographic experiment using a modified version of the contextual cueing paradigm.
View Article and Find Full Text PDFSearching for an object in a cluttered environment takes advantage of different cues, explicit attentional cues, such as arrows, and visual cues, such as saliency, but also memory. Behavioral studies manipulating the spatial relationships between context and target in visual search suggest that the memory of context-target associations could be retrieved quickly and act at an early perceptual stage. On the other hand, neural responses are usually influenced by memory at a later, postperceptual stage.
View Article and Find Full Text PDF