Porous polymeric microspheres are an emerging class of materials, offering stimuli-responsive cargo uptake and release. Herein, we describe a new approach to fabricate porous microspheres based on temperature-induced droplet formation and light-induced polymerization. Microparticles were prepared by exploiting the partial miscibility of a thermotropic liquid crystal (LC) mixture composed of 4-cyano-4'-pentylbiphenyl (5CB, unreactive mesogens) with 2-methyl-1,4-phenylene bis4-[3-(acryloyloxy)propoxy] benzoate (RM257, reactive mesogens) in methanol (MeOH).
View Article and Find Full Text PDFMesoporous inorganic thin films are promising materials architectures for a variety of high-value applications, ranging from optical coatings and purification membranes to sensing and energy storage devices. Having precise control over the structural parameters of the porous network is crucial for broadening their applicability. To this end, the use of block copolymers (BCP) as sacrificial structure-directing agents via micelle coassembly is a particularly attractive route, since the resultant pore size is directly related to scaling laws for the radius of gyration of the pore-forming macromolecule.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2020
Mesoporous thin film architectures are an important class of materials that exhibit unique properties, which include high surface area, versatile surface functionalization, and bicontinuous percolation paths through a broad library of pore arrangements on the 10 nm length scale. Although porosimetry of bulk materials via sorption techniques is common practice, the characterization of thin mesoporous films with small sample volumes remains a challenge. A range of techniques are geared toward providing information over pore morphology, pore size distribution, surface area and overall porosity, but none of them offers a holistic evaluation and results are at times inconsistent.
View Article and Find Full Text PDFHerein, we report on the phase behaviour of a binary liquid mixture composed of methanol (MeOH) and the thermotropic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB). The corresponding phase diagram combines features of a conventional liquid-liquid mixture with characteristics that are particular to the nematic liquid crystal. We observe four arrangements as a function of composition and temperature, namely monophasic isotropic, monophasic nematic, biphasic isotropic-isotropic and biphasic isotropic-nematic, with an upper critical solution temperature of 24.
View Article and Find Full Text PDF