Int J Mol Sci
October 2024
The objective of this study was to develop two lipid nanoparticle (LNP) formulations capable of efficiently expressing a reporter mRNA while co-delivering the anti-inflammatory drug dexamethasone (DX) to reduce inflammatory side effects in protein replacement therapies. Two types of LNPs were developed, in which 25% of cholesterol was replaced by DX. These LNPs contained either 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) as a helper lipid.
View Article and Find Full Text PDFLipid nanoparticles (LNPs) tailored for mRNA delivery were optimized to serve as a platform for treating metabolic diseases. Four distinct lipid mixes (LMs) were formulated by modifying various components: LM1 (ALC-0315/DSPC/Cholesterol/ALC-0159), LM2 (ALC-0315/DOPE/Cholesterol/ALC-0159), LM3 (ALC-0315/DSPC/Cholesterol/DMG-PEG2k), and LM4 (DLin-MC3-DMA/DSPC/Cholesterol/ALC-0159). LNPs exhibited stability and homogeneity with a mean size of 75 to 90 nm, confirmed by cryo-TEM and SAXS studies.
View Article and Find Full Text PDFHepatocytes exert pivotal roles in metabolism, protein synthesis and detoxification. Non-parenchymal liver cells (NPCs), largely comprising macrophages, dendritic cells, hepatic stellate cells and liver sinusoidal cells (LSECs), serve to induce immunological tolerance. Therefore, the liver is an important target for therapeutic approaches, in case of both (inflammatory) metabolic diseases and immunological disorders.
View Article and Find Full Text PDFCancer is a leading cause of death worldwide. The search for innovative therapeutic approaches is a principal focus of medical research. Vaccine strategies targeting a number of tumor-associated antigens are currently being evaluated.
View Article and Find Full Text PDFDiseases that affect the liver account for approximately 2 million deaths worldwide each year. The increasing prevalence of these diseases and the limited efficacy of current treatments are expected to stimulate substantial growth in the global market for therapeutics that target the liver. Currently, liver transplantation is the only curative option available for many liver diseases.
View Article and Find Full Text PDFPhenylketonuria (PKU) is an inborn error of metabolism caused by a deficiency in functional phenylalanine hydroxylase (PAH), resulting in accumulation of phenylalanine (Phe) in patients' blood and organs. Affected patients encounter severe developmental delay, neurological deficits, and behavioral abnormalities when not treated. Early diagnosis and treatment are extremely important; newborn screening programs have been implemented in most countries to ensure early identification of patients with PKU.
View Article and Find Full Text PDFVitamin E (VitE) is one of the most important antioxidants and plays a key role in decreasing the inflammatory effects of oxidative stress caused by recurrent doses of iron administration in anemia treatment. However, VitE is poorly soluble in aqueous environments. Here, VitE encapsulation into solid lipid nanoparticles (SLN) composed of myristil myristate to improve its bioavailability was proposed.
View Article and Find Full Text PDFChildhood mortality represents a major issue with 5. 3 million worldwide deaths of children under 5 years of age in 2019. Approximately half of those deaths can be attributed to easily preventable, infectious diseases.
View Article and Find Full Text PDFLiver inflammation represents a major clinical problem in a wide range of pathologies. Among the strategies to prevent liver failure, dexamethasone (DXM) has been widely used to suppress inflammatory responses. The use of nanocarriers for encapsulation and sustained release of glucocorticoids to liver cells could provide a solution to prevent severe side effects associated with systemic delivery as the conventional treatment regime.
View Article and Find Full Text PDFHereditary tyrosinemia type 1 is an inborn error of amino acid metabolism characterized by deficiency of fumarylacetoacetate hydrolase (FAH). Only limited treatment options (e.g.
View Article and Find Full Text PDFHepatocytes comprise the majority of the liver and largely exert metabolic functions, whereas non-parenchymal cells (NPCs)-comprising Kupffer cells, dendritic cells and liver sinusoidal endothelial cells-control the immunological state within this organ. Here, we compared the suitability of two isolation methods for murine liver NPCs. Liver perfusion (LP) with collagenase/DNase I applied via the portal vein leads to efficient liver digestion, whereas the modified liver dissociation (LD) method combines mechanical dissociation of the retrieved organ with enzymatic degradation of the extracellular matrix.
View Article and Find Full Text PDFAgro-industrial wastes to be a global concern since agriculture and industrial processes are growing exponentially with the fast increase of the world population. Biopolymers are complex molecules produced by living organisms, but also found in many wastes or derived from wastes. The main drawbacks for the use of polymers are the high costs of the polymer purification processes from waste and the scale-up in the case of biopolymer production by microorganisms.
View Article and Find Full Text PDFIn the last decades, the use of nanocarriers for immunotherapeutic purposes has gained a lot of attention, especially in the field of tumor therapy. However, most types of nanocarriers accumulate strongly in the liver after systemic application. Due to the default tolerance-promoting role of liver non-parenchymal cells (NPCs), Kupffer cells (KCs), liver sinusoidal endothelial cells (LSECs), and hepatic stellate cells (HSCs), their potential role on the immunological outcome of systemic nano-vaccination approaches for therapy of tumors in the liver and in other organs needs to be considered.
View Article and Find Full Text PDFObjective: Healthcare workers (HCWs) are particularly exposed SARS-CoV-2 because they are critical in preventing viral transmission and treating COVID-19 patients. Within HCWs, personnel of intensive care units (ICUs) are at the forefront of treating patients with a severe course of COVID-19 infection and therefore represent an extremely vulnerable group. Thus, our objective is to contribute to establish means of infection control protecting HCWs in the frontline of the current pandemic.
View Article and Find Full Text PDFA nanocomposite based on bacterial cellulose (BC) containing montmorillonite (MMT) modified with silver (BC-MMT-Ag) was developed to be used as potential scaffold for wound healing. Montmorillonite was suspended in silver nitrate solution to incorporate silver in the matrix by ion exchange. The derivative silver clay suspension was used to modify bacterial cellulose membranes by ex situ technique.
View Article and Find Full Text PDFBiopolymeric blends based on bacterial cellulose (BC) films modified with low molecular weight chitosan (Chi) were developed for controlled release of ciprofloxacin (Cip). Biophysical studies revealed a compatible and cooperative network between BC and Chi including deep structural changes in the BC matrix shown by spectroscopic and thermal analyses (SEM, roughness analysis, FTIR, XRD, TGA, mechanical properties and water vapor transmission rate). Incorporation of chitosan to BC matrix generated a thickening scaffold with high permeability to water vapor from 0.
View Article and Find Full Text PDFGlioblastoma (GB) is a highly infiltrative tumor, recurring, in 90% of cases, within a few centimeters of the surgical resection cavity, even with adjuvant chemo/radiotherapy. Residual GB cells left in the margins or infiltrating the brain parenchyma shelter behind the extremely fragile and sensitive brain tissue and may favor recurrence. Tools for eliminating these cells without damaging the brain microenvironment are urgently required.
View Article and Find Full Text PDFBackground: Lipid nanoparticles are considered one of the most promising systems for controlled release of therapeutic molecules highly hydrophobic and with low biodisponibility. Solid lipid nanoparticles and nanostructured lipids carriers are widely seen as the workhorses of drug delivery systems because of low toxicity, enhanced encapsulation capacity, controlled drug kinetic release, easy tailoring and targeting and practicable scale up.
Conclusions: A new generation of hybrid lipid nanoparticles has emerged by combining the lipidic properties with polymers, proteins and metallic structures.
The study of neglected diseases has not received much attention, especially from public and private institutions over the last years, in terms of strong support for developing treatment for these diseases. Support in the form of substantial amounts of private and public investment is greatly needed in this area. Due to the lack of novel drugs for these diseases, nanobiotechnology has appeared as an important new breakthrough for the treatment of neglected diseases.
View Article and Find Full Text PDFBacterial cellulose (BC) is an extracellular polymer produced by many microorganisms. The Komagataeibacter genus is the best producer using semi-synthetic media and agricultural wastes. The main advantages of BC are the nanoporous structure, high water content and free hydroxyl groups.
View Article and Find Full Text PDFIntroduction: Cerebrospinal fluid (CSF) leaks are a common complication after cranial and spinal surgery and are associated with increased morbidity. Despite continuous research in this field, this problem is far from solved. In this paper, we describe the construction and testing of a bacterial cellulose (BC) membrane as a new dural patch.
View Article and Find Full Text PDFDoxorubicin (Dox) is a hydrophilic drug extensively used for treatment of breast, lung, and ovarian cancer, among others; it is highly toxic and can cause serious side effects on nontargeted tissues. We developed and studied a hybrid nanoporous microparticle (hNP) carrier based on calcium carbonate and biopolymers derivatized with folic acid (FA) and containing Dox as a chemotherapeutic drug model. The hNPs were characterized by X-ray diffraction, and Raman and Fourier transform infrared (FTIR) spectroscopies.
View Article and Find Full Text PDF