Due to the pronounced effect of the confined environment on the photochemical properties of 4-hydroxybenzylidene imidazolinone (HBI), a GFP-related chromophore, imidazolidinone and imidazothiazolone analogues have been studied as fluorescent probes. Their photoisomerization and their thermal reversion were studied under 365-nm-irradiation, resulting in observation of an enthalpy-entropy compensation effect. Theoretical studies were carried out to shed light on the thermal reversion mechanism.
View Article and Find Full Text PDFCollisional quenching of NO A (2)Σ(+) (v = 0) by N(2)O and CO(2) has been studied through measurements of vibrationally excited products by time resolved Fourier transform infrared emission. In both cases vibrationally excited NO X (2)Π (v) is seen and quantified in levels v≥ 2 with distributions which are close to statistical. However the quantum yields to produce these levels are markedly different for the two quenchers.
View Article and Find Full Text PDFSynthetic peptide or protein samples are mostly unpurified with trifluoroacetic acid (TFA) used during the synthesis procedure, which strongly interferes with structure determination by infrared (IR) spectroscopy. The aim of this work was to propose a simple strategy to remove TFA contribution from attenuated total reflection (ATR)-IR spectra of the hexahistidine peptide (His6) in aqueous solution to study the conformation of this synthetic peptide without previous purification. Such a strategy is based on the subtraction mode widely employed to remove water contribution, and it is tested with TFA unpurified histidine as a model system.
View Article and Find Full Text PDFThis paper reports for the first time the synthesis and characterization of trifluoromethyl fluoroformyl trioxicarbonate, CF(3)OC(O)OOOC(O)F. The new trioxide is obtained from the gas-phase photolytic reaction of CF(3)C(O)OC(O)CF(3) and FC(O)C(O)F at 223-228 K. It is a very thermally labile molecule that decomposes at room temperature by rupture of either of the CF(3)OC(O)O-O-OC(O)F bonds.
View Article and Find Full Text PDFGas phase thermal decomposition of CF(3)OC(O)OOC(O)F and CF(3)OC(O)OOCF(3) was studied at temperatures between 64 and 98 degrees C (CF(3)OC(O)OOC(O)F) and 130-165 degrees C (CF(3)OC(O)OOCF(3)) using FTIR spectroscopy to follow the course of the reaction. For both substances, the decompositions were studied with N(2) and CO as bath gases. The rate constants for the decomposition of CF(3)OC(O)OOC(O)F in nitrogen and carbon monoxide fit the Arrhenius equations k(N)2 = (3.
View Article and Find Full Text PDFThe conformational properties and geometric structures of fluoroformic acid anhydride, FC(O)OC(O)F, have been studied by vibrational spectroscopy, gas electron diffraction (GED), single-crystal X-ray diffraction, and quantum chemical calculations (HF, MP2, and B3LYP methods with 6-31G* and B3LYP/6-311+G* basis sets). Satellite bands in the IR matrix spectra, which increase in intensity when the matrix gas mixture is heated prior to deposition as a matrix, indicate the presence of two conformers at room temperature. According to the electron diffraction analysis, the prevailing conformer is of C(2) symmetry with both C=O bonds synperiplanar with respect to the opposite C-O bond ([sp, sp] conformer).
View Article and Find Full Text PDFIrradiation of the equilibrated gas mixture CF(3)O(2)NO(2)<==>CF(3)O(2) + NO(2) at room temperature using the output from UV fluorescent "blacklamps" provides a rapid and simple method for the production of pure samples of CF(3)ONO(2) in high yield (ca. 80%). This synthetic procedure is superior to that described in the literature in two aspects: (i) the yield of CF(3)ONO(2) is approximately a factor of 5 greater, and (ii) the present method avoids the need for a high pressure (70 bar) reactor.
View Article and Find Full Text PDFA complete study of the reaction of CF(3) radicals in the presence of CO and O(2) was carried out by using isotopically labeled reagents to form, selectively, all the possible isotopomers of the intermediate trioxide, CF(3)OC(O)OOOC(O)OCF(3), and of the stable peroxide, CF(3)OC(O)OOC(O)OCF(3). Analyses were carried out by means of FTIR spectroscopy in combination with ab initio calculations. At temperatures close to 0 degrees C, the acyloxy radicals formed were shown to exist long enough to yield a statistical mixture of isotopomers.
View Article and Find Full Text PDFThe open-chain trioxide CF(3)OC(O)OOOC(O)OCF(3) is synthesised by a photochemical reaction of CF(3)C(O)OC(O)CF(3), CO and O(2) under a low-pressure mercury lamp at -40 degrees C. The isolated trioxide is a colourless solid at -40 degrees C and is characterised by IR, Raman, UV and NMR spectroscopy. The compound is thermally stable up to -30 degrees C and decomposes with a half-life of 1 min at room temperature.
View Article and Find Full Text PDFThe synthesis of CF(3)OC(O)OOC(O)F is accomplished by the photolysis of a mixture of (CF(3)CO)(2)O, FC(O)C(O)F, CO, and O(2) at -15 degrees C using a low-pressure mercury lamp. The new peroxide is obtained in pure form in low yield after repeated trap-to-trap condensation and is characterized by NMR, IR, Raman, and UV spectroscopy. Geometrical parameters were studied by ab initio methods [B3LYP/6-311+G(d)].
View Article and Find Full Text PDF