The stoichiometry of the components of hexacyanoferrate materials affecting their final porosity properties and applications in CO capture is an issue that is rarely studied. In this work, the effect that stoichiometry of all element components and oxidation states of transition metals has on the structures of mesoporous K or Na-cobalt hexacyanoferrates (CoHCFs) and CO removal is reported. A series of CoHCFs model systems are synthesized using the co-precipitation method with varying amounts of Co ions.
View Article and Find Full Text PDFThe droplet phase of a reverse microemulsion formed by the surfactant cetyltrimethylammonium ferrocyanide was used as a matrix to synthesize nanoparticles of nickel hexacyanoferrate by adding just a solution of NiCl2 to the microemulsion media. Dynamic light scattering and small-angle neutron scattering measurements show that the reverse microemulsion droplets employed have a globular structure, with sizes that depend on water content. Transmission electron microscopy and electron diffraction are used to obtain information about the structure of the synthesized nanoparticles.
View Article and Find Full Text PDFThe use of an electrochemical reactor operated under different flow conditions to deposit silver from aqueous AgNO(3) solutions and tartaric acid as an organic additive on a commercial activated carbon with ultimate bactericidal applications in water purification processes is presented. The characterization of carbon/silver samples was studied by BET, FTIR, X-ray diffraction, XPS, and SEM techniques. The bactericidal activity of the carbon/silver samples was tested on drinking water samples inoculated with E.
View Article and Find Full Text PDF