Eukaryotic cells contain several membrane-separated organelles to compartmentalize distinct metabolic reactions. However, it has remained unclear how these organelle systems are coordinated when cells adapt metabolic pathways to support their development, survival or effector functions. Here we present OrgaPlexing, a multi-spectral organelle imaging approach for the comprehensive mapping of six key metabolic organelles and their interactions.
View Article and Find Full Text PDFSuccessful elimination of bacteria in phagocytes occurs in the phago-lysosomal system, but also depends on mitochondrial pathways. Yet, how these two organelle systems communicate is largely unknown. Here we identify the lysosomal biogenesis factor transcription factor EB (TFEB) as regulator for phago-lysosome-mitochondria crosstalk in macrophages.
View Article and Find Full Text PDFNeutrophils are key cells of our innate immune response with essential roles for eliminating bacteria and fungi from tissues. They are also the prototype of an amoeboid migrating leukocyte. As one of the first blood-recruited immune cell types during inflammation and infection, these cells can invade almost any tissue compartment.
View Article and Find Full Text PDFNeutrophils communicate with each other to form swarms in infected organs. Coordination of this population response is critical for the elimination of bacteria and fungi. Using transgenic mice, we found that neutrophils have evolved an intrinsic mechanism to self-limit swarming and avoid uncontrolled aggregation during inflammation.
View Article and Find Full Text PDF