Transverse mode instabilities are a major limitation for power scaling of fiber lasers but have so far only been observed in laser-active fibers. In this contribution we present experimental observations of transverse mode instabilities in a passive fiber. In this fiber, stimulated Raman scattering acted as heat source.
View Article and Find Full Text PDFWe present highly robust fiber Bragg gratings (FBGs) in passive large-mode-area fibers for kilowatt fiber laser systems. The gratings were inscribed directly through the fiber coating using near-infrared femtosecond laser pulses and then implemented in an all-fiber ytterbium-doped single-mode oscillator setup reaching up to 5 kW signal output power. The untreated cooled FBGs showed thermal coefficients as low as ${1}\;{\rm K}\;{{\rm kW}^{ - 1}}$1KkW, proving excellent qualification for the implementation into robust high-power fiber laser setups.
View Article and Find Full Text PDFSystematic experimental investigations toward the mode instability (MI) threshold in low-NA fibers are performed. By testing several fibers with varying V-parameters drawn from the same preform, a high degree of reproducibility of the experimental conditions could be achieved. This allows for systematic investigations on isolated parameters influencing the complex behavior of MI.
View Article and Find Full Text PDF