Pulsed laser fragmentation of microparticles (MPs) in liquid is a synthesis method for producing high-purity nanoparticles (NPs) from virtually any material. Compared with laser ablation in liquids (LAL), the use of MPs enables a fully continuous, single-step synthesis of colloidal NPs. Although having been employed in several studies, neither the fragmentation mechanism nor the efficiency or scalability have been described.
View Article and Find Full Text PDFLaser ablation in liquids is a highly interdisciplinary method at the intersection of physics and chemistry that offers the unique opportunity to generate surfactant-free and stable nanoparticles from virtually any material. Over the last decades, numerous experimental and computational studies aimed to reveal the transient processes governing laser ablation in liquids. Most experimental studies investigated the involved processes on timescales ranging from nanoseconds to microseconds.
View Article and Find Full Text PDFIn this work, we investigate single-pulse laser ablation of bulk stainless steel (AISI304), aluminium (Al) and copper (Cu) and its dependence on the pulse duration. We measured the reflectivity, ablation thresholds and volumes under the variation of pulse duration and fluence. The known drop of efficiency with increasing pulse duration is confirmed for single-pulse ablation in all three metals.
View Article and Find Full Text PDF