Publications by authors named "Maximilian Schleiting"

Prestressing of concrete is a commonly used technique in civil engineering to achieve long spans, reduced structural thicknesses, and resource savings. However, in terms of application, complex tensioning devices are necessary, and prestress losses due to shrinkage and creep of the concrete are unfavourable in terms of sustainability. In this work, a prestressing method using novel Fe-Mn-Al-Ni shape memory alloy rebars as a tensioning system in UHPC is investigated.

View Article and Find Full Text PDF

The mechanical performance of fibre-reinforced ultra-high-performance concrete based on alkali-activated slag was investigated, concentrating on the use of steel fibres. The flexural strength is slightly higher compared to the UHPC based on Ordinary Portland Cement (OPC) as the binder. Correlating the flexural strength test with multiple fibre-pullout tests, an increase in the bonding behaviour at the interfacial-transition zone of the AAM-UHPC was found compared to the OPC-UHPC.

View Article and Find Full Text PDF

The influence of reinforcement, especially fibre reinforcement in ultra-high performance concrete is strongly dependent on the bonding (adhesive, shear and friction bond) between metallic surface and cementitious matrix. As usually straight fibres are used for fibre reinforcement and, thus, no significant mechanical bonding is existent, the adhesive bond is particularly important. Previous studies stated that the adhesive bonding behaviour between metallic materials and cementitious matrix strongly depends on the chemical composition of metallic alloys.

View Article and Find Full Text PDF

The use of micro fibres in Ultra-High-Performance Concrete (UHPC) as reinforcement increases tensile strength and especially improves the post-cracking behaviour. Without using fibres, the dense structure of the concrete matrix results in a brittle failure upon loading. To counteract this behaviour by fibre reinforcement, an optimal bond between fibre and cementitious matrix is essential.

View Article and Find Full Text PDF