Background: Following surgery, patients with newly diagnosed glioblastoma frequently enter clinical trials. Nuanced risk assessment is warranted to reduce imbalances between study arms. Here, we aimed (I) to analyze the interactive effects of residual tumor with clinical and molecular factors on outcome and (II) to define a postoperative risk assessment tool.
View Article and Find Full Text PDFPurpose: Recent artificial intelligence algorithms aided intraoperative decision-making via stimulated Raman histology (SRH) during craniotomy. This study assesses deep learning algorithms for rapid intraoperative diagnosis from SRH images in small stereotactic-guided brain biopsies. It defines a minimum tissue sample size threshold to ensure diagnostic accuracy.
View Article and Find Full Text PDFPurpose: Although emerging clinical evidence supports robotic radiosurgery as a highly effective treatment option for renal cell carcinoma (RCC) less than 4 cm in diameter, delivery uncertainties and associated target volume margins have not been studied in detail. We assess intrafraction tumor motion patterns and accuracy of robotic radiosurgery in renal tumors with real-time respiratory tracking to optimize treatment margins.
Methods: Delivery log files from 165 consecutive treatments of RCC were retrospectively analyzed.
Brainstem metastases (BSM) present a significant neuro-oncological challenge, resulting in profound neurological deficits and poor survival outcomes. Stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (FSRT) offer promising therapeutic avenues for BSM despite their precarious location. This international multicenter study investigates the efficacy and safety of SRS and FSRT in 136 patients with 144 BSM treated at nine institutions from 2005 to 2022.
View Article and Find Full Text PDFBackground: In glioma patients, tumor growth and subsequent treatments are associated with various types of brain lesions. We hypothesized that cognitive functioning in these patients critically depends on the maintained structural connectivity of multiple brain networks.
Methods: The study included 121 glioma patients (median age, 52 years; median Eastern Cooperative Oncology Group performance score 1; CNS-WHO Grade 3 or 4) after multimodal therapy.
Accurate Magnetic Resonance Imaging (MRI) simulation is fundamental for high-precision stereotactic radiosurgery and fractionated stereotactic radiotherapy, collectively referred to as stereotactic radiotherapy (SRT), to deliver doses of high biological effectiveness to well-defined cranial targets. Multiple MRI hardware related factors as well as scanner configuration and sequence protocol parameters can affect the imaging accuracy and need to be optimized for the special purpose of radiotherapy treatment planning. MRI simulation for SRT is possible for different organizational environments including patient referral for imaging as well as dedicated MRI simulation in the radiotherapy department but require radiotherapy-optimized MRI protocols and defined quality standards to ensure geometrically accurate images that form an impeccable foundation for treatment planning.
View Article and Find Full Text PDFThe treatment of vestibular schwannomas (VS) has always posed a challenge for physicians. Three essential treatment principles are available: wait-and-scan, surgery, and stereotactic radiotherapy. In addition to the type of treatment, decisions must be made regarding the optimal timing of therapy, the combination of different treatment modalities, the potential surgical approach, and the type and intensity of radiation.
View Article and Find Full Text PDFState-of-the-art response assessment of central nervous system lymphoma (CNSL) by magnetic resonance imaging is challenging and an insufficient predictor of treatment outcomes. Accordingly, the development of novel risk stratification strategies in CNSL is a high unmet medical need. We applied ultrasensitive circulating tumor DNA (ctDNA) sequencing to 146 plasma and cerebrospinal fluid (CSF) samples from 67 patients, aiming to develop an entirely noninvasive dynamic risk model considering clinical and molecular features of CNSL.
View Article and Find Full Text PDFAlthough surgery remains the mainstay of treatment for most meningiomas, radiotherapy, specifically stereotactic radiosurgery, has become more commonplace as first-line therapy for select meningioma cases, particularly small meningiomas in challenging or high-risk anatomic locations. Radiosurgery for specific groups of meningiomas have been found to provide local control rates comparable to surgery alone. In this chapter stereotactic techniques for the treatment of meningiomas such as stereotactic radiosurgery by using Gamma knife or Linear Accelerator-based techniques (modified LINAC, Cyberknife, etc.
View Article and Find Full Text PDFBackground: The expression level of the programmed cell death ligand 1 (PD-L1) appears to be a predictor for response to immunotherapy using checkpoint inhibitors in patients with non-small cell lung cancer (NSCLC). As differences in terms of PD-L1 expression levels in the extracranial primary tumor and the brain metastases may occur, a reliable method for the non-invasive assessment of the intracranial PD-L1 expression is, therefore of clinical value. Here, we evaluated the potential of radiomics for a non-invasive prediction of PD-L1 expression in patients with brain metastases secondary to NSCLC.
View Article and Find Full Text PDF(1) Background: Transient increase in volume of vestibular schwannomas (VS) after stereotactic radiosurgery (SRS) is common and complicates differentiation between treatment-related changes (pseudoprogression, PP) and tumor recurrence (progressive disease, PD). (2) Methods: Patients with unilateral VS (n = 63) underwent single fraction robotic-guided SRS. Volume changes were classified according to existing RANO criteria.
View Article and Find Full Text PDFPurpose: In glioma patients, tumor development and multimodality therapy are associated with changes in health-related quality of life (HRQoL). It is largely unknown how different types and locations of tumor- and treatment-related brain lesions, as well as their relationship to white matter tracts and functional brain networks, affect HRQoL.
Methods: In 121 patients with pretreated gliomas of WHO CNS grades 3 or 4, structural MRI, O-(2-[F]fluoroethyl)-L-tyrosine (FET) PET, resting-state functional MRI (rs-fMRI) and self-reported HRQoL questionnaires (EORTC QLQ-C30/BN20) were obtained.
Purpose: In robotic stereotactic radiosurgery (SRS), optimal selection of collimators from a set of fixed cones must be determined manually by trial and error. A unique and uniformly scaled metric to characterize plan quality could help identify Pareto-efficient treatment plans.
Methods: The concept of dose-area product (DAP) was used to define a measure (DAP) of the targeting efficiency of a set of beams by relating the integral DAP of the beams to the mean dose achieved in the target volume.
Background: In glioma patients, multimodality therapy and recurrent tumor can lead to structural brain tissue damage characterized by pathologic findings in MR and PET imaging. However, little is known about the impact of different types of damage on the fiber architecture of the affected white matter.
Patients And Methods: This study included 121 pretreated patients (median age, 52 years; ECOG performance score, 0 in 48%, 1-2 in 51%) with histomolecularly characterized glioma (WHO grade IV glioblastoma, n=81; WHO grade III anaplastic astrocytoma, n=28; WHO grade III anaplastic oligodendroglioma, n=12), who had a resection, radiotherapy, alkylating chemotherapy, or combinations thereof.
Currently, contrast-enhanced MRI is the method of choice for treatment planning and follow-up in patients with meningioma. However, positron emission tomography (PET) imaging of somatostatin receptor subtype 2 (SSTR2) expression using Ga-DOTATATE may provide a higher sensitivity for meningioma detection, especially in cases with complex anatomy or in the recurrent setting. Here, we report on a patient with a multilocal recurrent atypical meningioma, in which Ga-DOTATATE PET was considerably helpful for treatment guidance and decision-making.
View Article and Find Full Text PDFSelf-injurious behavior (SIB) is associated with diverse psychiatric conditions. Sometimes (e.g.
View Article and Find Full Text PDFDetermining the presence of tumor in biopsies and the decision-making during resections is often dependent on intraoperative rapid frozen-section histopathology. Recently, stimulated Raman scattering microscopy has been introduced to rapidly generate digital hematoxylin-and-eosin-stained-like images (stimulated Raman histology) for intraoperative analysis. To enable intraoperative prediction of tumor presence, we aimed to develop a new deep residual convolutional neural network in an automated pipeline and tested its validity.
View Article and Find Full Text PDFO-(2-[F]fluoroethyl)-L-tyrosine (FET) is a widely used amino acid tracer for positron emission tomography (PET) imaging of brain tumours. This retrospective study and survey aimed to analyse our extensive database regarding the development of FET PET investigations, indications, and the referring physicians' rating concerning the role of FET PET in the clinical decision-making process. Between 2006 and 2019, we performed 6534 FET PET scans on 3928 different patients against a backdrop of growing demand for FET PET.
View Article and Find Full Text PDFBackground: The development of robotic systems has provided an alternative to frame-based stereotactic procedures. The aim of this experimental phantom study was to compare the mechanical accuracy of the Robotic Surgery Assistant (ROSA) and the Leksell stereotactic frame by reducing clinical and procedural factors to a minimum.
Methods: To precisely compare mechanical accuracy, a stereotactic system was chosen as reference for both methods.