Publications by authors named "Maximilian R ASSkamp"

Background: Due to its inevitable formation during biodiesel production and its relatively high degree of reduction, glycerol is an attractive carbon source for microbial fermentation processes. However, glycerol is catabolized in a fully respiratory manner by the eukaryotic platform organism . We previously engineered   strains to favor fermentative metabolism of glycerol by replacing the native FAD-dependent glycerol catabolic pathway with the NAD-dependent 'DHA pathway'.

View Article and Find Full Text PDF

Glycerol is an attractive substrate for microbial fermentations due to its higher degree of reduction compared to glucose. The replacement of the native FAD-dependent glycerol catabolic pathway in Saccharomyces cerevisiae by an artificial NADH-delivering dihydroxyacetone (DHA) pathway is supposed to facilitate the capturing of electrons in fermentation products. This requires that the electrons from the cytosolic NADH are not exclusively transferred to oxygen.

View Article and Find Full Text PDF

Compared to sugars, a major advantage of using glycerol as a feedstock for industrial bioprocesses is the fact that this molecule is more reduced than sugars. A compound whose biotechnological production might greatly profit from the substrate's higher reducing power is 1,2-propanediol (1,2-PDO). Here we present a novel metabolic engineering approach to produce 1,2-PDO from glycerol in S.

View Article and Find Full Text PDF