Publications by authors named "Maximilian P Born"

The widespread use of medical face masks during the SARS-CoV-2 pandemic has significantly increased plastic waste, with a considerable proportion of these masks ending up in the environment. As these masks are transported through wind and surface runoff, they accumulate in water bodies, leading to pollution and potential environmental risks. Understanding the transport behavior of these macroplastic items is crucial for addressing the pollution problem effectively.

View Article and Find Full Text PDF

Littered plastics are partly introduced into water bodies, ultimately transporting this waste to the shores and oceans. At the shore, ultraviolet (UV) radiation (also present in other environmental compartments) and wave breaking cause plastics to degrade and fragment into smaller particles, called microplastics, if below 5 mm. Since these plastics' surfaces can act as vectors for hydrophobic (toxic) chemical substances (e.

View Article and Find Full Text PDF

The transport behavior of microplastics (MPs) in the fluvial environment is scarcely researched. Besides settling velocities and critical shear stress for erosion, only a few investigations aim at MPs' vertical concentration profile and the underlying theory required. Therefore, this paper's experiments investigate vertical concentration profiles of approximately spherical MP particles ( = 1-3 mm) with densities close to water (0.

View Article and Find Full Text PDF

Microplastic research has experienced almost exponential growth in publications and proceeded faster than ever throughout the last years. This increase comes with a downside in terms of missing standardizations and definitions especially concerning experiments. Furthermore, incomparability and lacking transferability of fragmentation studies onto the marine environment still hinder more realistic extrapolations and accurate numerical models.

View Article and Find Full Text PDF