Publications by authors named "Maximilian Nau"

Secondary hydroxyl groups of hydroxypropyl cellulose (HPC) are transformed into reactive carbonyl groups selectively via TEMPO-mediated oxidation in the presence of sodium hypochlorite. By using this oxidation protocol, we introduced carbonyl functions in HPC under mild conditions, with a controlled degree of oxidation (DOx) up to 2.5 and a low degradation of the polysaccharide.

View Article and Find Full Text PDF

Chemistry, geometric shape and swelling behavior are the key parameters that determine any successful use of man-made polymeric networks (gels). While understanding of the swelling behavior of both water-swellable hydrogels and organogels that swell in organic solvents can be considered well-advanced with respect to fossil fuel-based polymer networks, the understanding, in particular, of wood-derived polymers in such a network architecture is still lacking. In this work, we focus on organogels derived from hydroxypropyl cellulose (HPC) ester.

View Article and Find Full Text PDF

Cellulose derivate phase separation in thin films was applied to generate patterned films with distinct surface morphology. Patterned polymer thin films are utilized in electronics, optics, and biotechnology but films based on bio-polymers are scarce. Film formation, roughness, wetting, and patterning are often investigated when it comes to characterization of the films.

View Article and Find Full Text PDF