We have investigated the adsorption and self-metalation of free-base tetraphenyltransdibenzoporphyrin (2H-TPtdBP) on Cu(111) as a function of coverage and temperature using scanning tunneling microscopy, x-ray photoelectron spectroscopy, temperature programmed desorption, and density-functional theory calculations. At low coverages (<0.16 molecules nm), we observe isolated individual molecules with an inverted conformation and no self-metalation up to 363 K.
View Article and Find Full Text PDFPure zinc tetraphenylporphyrin (ZnTPP) adsorbs on rutile TiO(110) as flat-lying molecules, mostly interacting with the surface through weak van-der-Waals interactions. Pure monocarboxyphenyl triphenylporphyrin (2HMCTPP) forms a covalent bond to the rutile TiO(110) surface through the carboxylic acid group, yielding densely-packed layers of upright-standing molecules. If given the chance, 2HMCTPP could therefore be expected to displace the weaker-bonding ZnTPP molecules.
View Article and Find Full Text PDFUnderstanding the adsorption of organic molecules on surfaces is of essential importance for many applications. Adsorption energies are typically measured using temperature-programmed desorption. However, for large organic molecules, often only desorption of the multilayers is possible, while the bottom monolayer in direct contact to the surface cannot be desorbed without decomposition.
View Article and Find Full Text PDF