Oral stimulation with chemosensates was found to trigger changes in the composition of the salivary proteome and metabolome, which translate into a functional modulation of odor and taste perception. Orosensory intervention with 6-gingerol induced a significant increase in the abundance of salivary sulfhydryl oxidase 1, which was found to catalyze the oxidative decline of odor-active 2-furfurylthiol, thus resulting in a decrease in the odorant levels in exhaled breath, as shown by PTR-MS, and a reduction of the perceived sulfury after-smell. Therefore, sulfhydryl oxidase 1 may be considered as a component of a molecular network triggering oral cleansing mechanisms after food ingestion.
View Article and Find Full Text PDFResidential wood combustion emissions are one of the major global sources of particulate and gaseous organic pollutants. However, the detailed chemical compositions of these emissions are poorly characterized due to their highly complex molecular compositions, nonideal combustion conditions, and sample preparation steps. In this study, the particulate organic emissions from a masonry heater using three types of wood logs, namely, beech, birch, and spruce, were chemically characterized using thermal desorption in situ derivatization coupled to a GCxGC-ToF/MS system.
View Article and Find Full Text PDF