Publications by authors named "Maximilian Heide"

Ambient desorption/ionization mass spectrometry (ADI-MS) has been widely used for direct analysis of real samples without sample preparation or separation. Studies on the quantification of low molecular weight compounds in complex matrices with ADI-MS remain scarce. In this paper, we report the application of surface-assisted flowing atmospheric-pressure afterglow mass spectrometry (SA-FAPA-MS) for fast qualitative screening of electronic cigarette liquid (e-liquids) ingredients and direct quantification of nicotine.

View Article and Find Full Text PDF

Ambient desorption/ionization mass spectrometry (ADI-MS) has been broadly applied to accomplish direct analysis without sample preparation or separation. However, quantification capabilities and analytical performance are sometimes limited. Here, we report signal enhancement effects and improved quantification capabilities in plasma-based ADI-MS, when a flowing atmospheric-pressure afterglow (FAPA) source is used to probe analytes on tailored thin-layer chromatography (TLC) plates.

View Article and Find Full Text PDF

Two representative organic photoreactions, namely a bimolecular photocycloaddition and a monomolecular photorearrangement, are presented that are accelerated when the reaction is performed "on-water", that is, at the water-substrate interface with no solvation of the reaction components. According to the established models of ground-state reactions "on-water", the enhanced efficiency of the photoreactions is explained by hydrophobic effects (Paternó-Büchi reaction) or specific hydrogen bonding (di-π-methane rearrangement) at the water-substrate interface that decrease the energy of the respective transition state. These results point to the potential of this approach to conduct photoreactions more efficiently in an ecologically favorable medium.

View Article and Find Full Text PDF

Ambient desorption/ionization mass spectrometry (ADI-MS) is widely used as a rapid screening tool of samples in their native state without sample preparation. While analysis times are much less than 1 min per sample, one challenge of ADI-MS is the possibility to perform quantitative analysis of analytes in complex matrices. Typically, the goal is to probe a variety of different analytes in a complex matrix from a solid, liquid, or otherwise uncharacterized surface in the open air in front of the MS inlet.

View Article and Find Full Text PDF

Thin-layer chromatography (TLC) was interfaced to high-resolution mass spectrometry (MS) using a flowing atmospheric-pressure afterglow (FAPA) ambient desorption/ionization source. The influence of different TLC stationary phases on the mass spectral signal response and mass spectral image quality in FAPA-MS was carefully investigated. Specifically, a mixture of selected analgesics (acetaminophen), alkaloids (nicotine and caffeine), and steroids (cortisone) was deposited on different stationary phases (silica plates, RP-modified silica plates, CN-modified silica plates, DIOL-modified silica plates, and NH-modified silica plates), and TLC plates with different thickness (100, 200, 250, 500, 1000, 2000 μm) of the stationary phase.

View Article and Find Full Text PDF