Over the past decades, the electrochemical CO-reduction reaction (CORR) has emerged as a promising option for facilitating intermittent energy storage while generating industrial raw materials of economic relevance such as CO. Recent studies have reported that Au-Cu bimetallic nanocatalysts feature a superior CO-to-CO conversion as compared with the monometallic components, thus improving the noble metal utilization. Under this premise and with the added advantage of a suppressed H-evolution reaction due to absence of a carbon support, herein, we employ bimetallic AuCu and AuCu aerogels (with a web thickness ≈7 nm) as CO-reduction electrocatalysts in 0.
View Article and Find Full Text PDFThe physical properties of nanomaterials are determined by their structural features, making accurate structural control indispensable. This carries over to future applications. In the case of metal aerogels, highly porous networks of aggregated metal nanoparticles, such precise tuning is still largely pending.
View Article and Find Full Text PDFIn recent years, operando/in situ X-ray absorption spectroscopy (XAS) has become an important tool in the electrocatalysis community. However, the high catalyst loadings often required to acquire XA-spectra with a satisfactory signal-to-noise ratio frequently imply the use of thick catalyst layers (CLs) with large ion- and mass-transport limitations. To shed light on the impact of this variable on the spectro-electrochemical results, in this study we investigate Pd-hydride formation in carbon-supported Pd-nanoparticles (Pd/C) and an unsupported Pd-aerogel with similar Pd surface areas but drastically different morphologies and electrode packing densities.
View Article and Find Full Text PDFCation exchange emerged as a versatile tool to obtain a variety of nanocrystals not yet available via a direct synthesis. Reduced reaction times and moderate temperatures make the method compatible with anisotropic nanoplatelets (NPLs). However, the subtle thermodynamic and kinetic factors governing the exchange require careful control over the reaction parameters to prevent unwanted restructuring.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2020
As there is a great demand of 2D metal networks, especially out of gold for a plethora of applications we show a universal synthetic method via phase boundary gelation which allows the fabrication of networks displaying areas of up to 2 cm . They are transferred to many different substrates: glass, glassy carbon, silicon, or polymers such as PDMS. In addition to the standardly used web thickness, the networks are parametrized by their fractal dimension.
View Article and Find Full Text PDFIn order to enable future use of aerogels in heterogeneous solid or fluidized bed catalysis a method of production of millimeter sized monolithic Au/AlO aerogel spheres by a continuous flow reactor is developed. Flow velocities and synthesis parameters are optimized to produce aerogel spheres in three different sizes. The resulting aerogel spheres exhibit a porous aluminium oxide aerogel matrix with a large specific surface area of 400 m g on which gold nanoparticles are evenly distributed.
View Article and Find Full Text PDFSolar radiation is a versatile source of energy, convertible to different forms of power. A direct path to exploit it is the generation of heat, for applications including passive building heating, but it can also drive secondary energy-conversion steps. We present a novel concept for a hybrid material which is both strongly photo-absorbing and with superior characteristics for the insulation of heat.
View Article and Find Full Text PDF