RNA constitutes a large fraction of chromatin. Spatial distribution and functional relevance of most of RNA-chromatin interactions remain unknown. We established a landscape analysis of RNA-chromatin interactions in human acute myeloid leukemia (AML).
View Article and Find Full Text PDFThe expansion of acute myeloid leukemia (AML) blasts not only suppresses normal hematopoiesis, but also alters the microenvironment. The interplay of different components of the bone marrow gives rise to altered metabolic states and activates signaling pathways which lead to resistance and impede effective therapy. Therefore, the underlying processes and mechanisms represent attractive therapeutic leverage points for overcoming therapy resistance in AML.
View Article and Find Full Text PDFFLT3 tyrosine kinase inhibitor (TKI) therapy evolved into a standard therapy in FLT3-mutated AML. TKI resistance, however, develops frequently with poor outcomes. We analyzed acquired TKI resistance in AML cell lines by multilayered proteome analyses.
View Article and Find Full Text PDFImmunotherapies, such as chimeric antigen receptor (CAR) modified T cells and antibody-drug conjugates (ADCs), have revolutionized the treatment of cancer, especially of lymphoid malignancies. The application of targeted immunotherapy to patients with acute myeloid leukemia (AML) has been limited in particular by the lack of a tumor-specific target antigen. Gemtuzumab ozogamicin (GO), an ADC targeting CD33, is the only approved immunotherapeutic agent in AML.
View Article and Find Full Text PDFSIRT7 is an NAD(+)-dependent protein deacetylase with important roles in ribosome biogenesis and cell proliferation. Previous studies have established that SIRT7 is associated with RNA polymerase I, interacts with pre-ribosomal RNA (rRNA) and promotes rRNA synthesis. Here we show that SIRT7 is also associated with small nucleolar RNP (snoRNPs) that are involved in pre-rRNA processing and rRNA maturation.
View Article and Find Full Text PDF