Publications by authors named "Maximilian B MacPherson"

Changes in the oxidative (redox) environment accompany idiopathic pulmonary fibrosis (IPF). S-glutathionylation of reactive protein cysteines is a post-translational event that transduces oxidant signals into biological responses. We recently demonstrated that increases in S-glutathionylation promote pulmonary fibrosis, which was mitigated by the deglutathionylating enzyme glutaredoxin (GLRX).

View Article and Find Full Text PDF

Asthma is a chronic disorder characterized by inflammation, mucus metaplasia, airway remodeling, and hyperresponsiveness. We recently showed that IL-1-induced glycolytic reprogramming contributes to allergic airway disease using a murine house dust mite model. Moreover, levels of pyruvate kinase M2 (PKM2) were increased in this model as well as in nasal epithelial cells from asthmatics as compared with healthy controls.

View Article and Find Full Text PDF

Malignant mesothelioma is an aggressive cancer in desperate need of treatment. We have previously shown that extracellular signaling regulated kinase 5 (ERK5) plays an important role in mesothelioma pathogenesis using ERK5 silenced human mesothelioma cells exhibiting significantly reduced tumor growth in immunocompromised mice. Here, we used a specific ERK 5 inhibitor, XMD8-92 in various and models to demonstrate that inhibition of ERK5 can slow down mesothelioma tumorigenesis.

View Article and Find Full Text PDF

Despite the causal relationship established between malignant mesothelioma (MM) and asbestos exposure, the exact mechanism by which asbestos induces this neoplasm and other asbestos-related diseases is still not well understood. MM is characterized by chronic inflammation, which is believed to play an intrinsic role in the origin of this disease. We recently found that asbestos activates the nod-like receptor family member containing a pyrin domain 3 (NLRP3) inflammasome in a protracted manner, leading to an up-regulation of IL-1β and IL-18 production in human mesothelial cells.

View Article and Find Full Text PDF

Introduction: Five year survival for metastatic melanoma (MM) is very low at <10%. Therapeutic options have been limited secondary to systemic toxicity. As a result there has been a growing movement towards developing targeted drug delivery models.

View Article and Find Full Text PDF

Malignant mesothelioma (MM) is an aggressive tumor with no treatment regimen. Previously we have demonstrated that cyclic AMP response element binding protein (CREB) is constitutively activated in MM tumor cells and tissues and plays an important role in MM pathogenesis. To understand the role of CREB in MM tumor growth, we generated CREB-inhibited MM cell lines and performed in vitro and in vivo experiments.

View Article and Find Full Text PDF

Malignant mesothelioma (MM), lung cancers, and asbestosis are hyperproliferative diseases associated with exposures to asbestos. All have a poor prognosis; thus, the need to develop novel and effective therapies is urgent. Vandetanib (Van) (ZD6474, ZACTIMA) is a tyrosine kinase inhibitor that has shown equivocal results in clinical trials for advanced non-small cell lung cancer.

View Article and Find Full Text PDF

Background: Asbestos exposure is related to various diseases including asbestosis and malignant mesothelioma (MM). Among the pathogenic mechanisms proposed by which asbestos can cause diseases involving epithelial and mesothelial cells, the most widely accepted one is the generation of reactive oxygen species and/or depletion of antioxidants like glutathione. It has also been demonstrated that asbestos can induce inflammation, perhaps due to activation of inflammasomes.

View Article and Find Full Text PDF

Inflammation is a key mediator in the development of malignant mesothelioma, which has a dismal prognosis and poor therapeutic strategies. Curcumin, a naturally occurring polyphenol in turmeric, has been shown to possess anticarcinogenic properties through its anti-inflammatory effects. Inflammasomes, a component of inflammation, control the activation of caspase-1 leading to pyroptosis and processing of proinflammatory cytokines, interleukin (IL)-1β and IL-18.

View Article and Find Full Text PDF

Background: Malignant mesotheliomas (MMs) are chemoresistant tumors related to exposure to asbestos fibers. The long latency period of MM (30-40 yrs) and heterogeneity of tumor presentation make MM difficult to diagnose and treat at early stages. Currently approved second-line treatments following surgical resection of MMs include a combination of cisplatin or carboplatin (delivered systemically) and pemetrexed, a folate inhibitor, with or without subsequent radiation.

View Article and Find Full Text PDF

Background: Pleural fibrosis and malignant mesotheliomas (MM) occur after exposures to pathogenic fibers, yet the mechanisms initiating these diseases are unclear.

Results: We document priming and activation of the NLRP3 inflammasome in human mesothelial cells by asbestos and erionite that is causally related to release of IL-1β, IL-6, IL-8, and Vascular Endothelial Growth Factor (VEGF). Transcription and release of these proteins are inhibited in vitro using Anakinra, an IL-1 receptor antagonist that reduces these cytokines in a human peritoneal MM mouse xenograft model.

View Article and Find Full Text PDF

Purpose: Malignant mesothelioma is a devastating disease with a need for new treatment strategies. In the present study, we showed the importance of extracellular signal-regulated kinase 5 (ERK5) in malignant mesothelioma tumor growth and treatment.

Experimental Design: ERK5 as a target for malignant mesothelioma therapy was verified using mesothelial and mesothelioma cell lines as well as by xenograft severe combined immunodeficient (SCID) mouse models.

View Article and Find Full Text PDF

Pleural and peritoneal mesotheliomas (MMs) are chemoresistant tumors with no effective therapeutic strategies. The authors first injected multifunctional, acid-prepared mesoporous spheres (APMS), microparticles functionalized with tetraethylene glycol oligomers, intraperitoneally into rodents. Biodistribution of APMS was observed in major organs, peritoneal lavage fluid (PLF), and urine of normal mice and rats.

View Article and Find Full Text PDF

Members of the extracellular signal-regulated kinase (ERK) family may have distinct roles in the development of cell injury and repair, differentiation and carcinogenesis. Here, we show, using a synthetic small-molecule MEK1/2 inhibitor (U0126) and RNA silencing of ERK1 and 2, comparatively, that ERK2 is critical to transformation and homeostasis of human epithelioid malignant mesotheliomas (MMs), asbestos-induced tumors with a poor prognosis. Although MM cell (HMESO) lines stably transfected with shERK1 or shERK2 both exhibited significant decreases in cell proliferation in vitro, injection of shERK2 cells, and not shERK1 cells, into immunocompromised severe combined immunodeficiency (SCID) mice showed significant attenuated tumor growth in comparison to shControl (shCon) cells.

View Article and Find Full Text PDF

Inflammation and lung remodeling are hallmarks of asbestos-induced fibrosis, but the molecular mechanisms that control these events are unclear. Using laser capture microdissection (LCM) of distal bronchioles in a murine asbestos inhalation model, we show that osteopontin (OPN) is up-regulated by bronchiolar epithelial cells after chrysotile asbestos exposures. In contrast to OPN wild-type mice (OPN(+/+)) inhaling asbestos, OPN null mice (OPN(-/-)) exposed to asbestos showed less eosinophilia in bronchoalveolar lavage fluids, diminished lung inflammation, and decreased mucin production.

View Article and Find Full Text PDF

We hypothesized that normal human mesothelial cells acquire resistance to asbestos-induced toxicity via induction of one or more epidermal growth factor receptor (EGFR)-linked survival pathways (phosphoinositol-3-kinase/AKT/mammalian target of rapamycin and extracellular signal-regulated kinase [ERK] 1/2) during simian virus 40 (SV40) transformation and carcinogenesis. Both isolated HKNM-2 mesothelial cells and a telomerase-immortalized mesothelial line (LP9/TERT-1) were more sensitive to crocidolite asbestos toxicity than an SV40 Tag-immortalized mesothelial line (MET5A) and malignant mesothelioma cell lines (HMESO and PPM Mill). Whereas increases in phosphorylation of AKT (pAKT) were observed in MET5A cells in response to asbestos, LP9/TERT-1 cells exhibited dose-related decreases in pAKT levels.

View Article and Find Full Text PDF

Background: Malignant mesotheliomas (MM) have a poor prognosis, largely because of their chemoresistance to anti-cancer drugs such as doxorubicin (Dox). Here we show using human MM lines that Dox activates extracellular signal-regulated kinases (ERK1 and 2), causally linked to increased expression of ABC transporter genes, decreased accumulation of Dox, and enhanced MM growth. Using the MEK1/2 inhibitor, U0126 and stably transfected shERK1 and shERK2 MM cell lines, we show that inhibition of both ERK1 and 2 sensitizes MM cells to Dox.

View Article and Find Full Text PDF

Background: Exposures to an amphibole fiber in Libby, Montana cause increases in malignant mesothelioma (MM), a tumor of the pleural and peritoneal cavities with a poor prognosis. Affymetrix microarray/GeneSifter analysis was used to determine alterations in gene expression of a human mesothelial cell line (LP9/TERT-1) by a non-toxic concentration (15×10(6) μm2/cm2) of unprocessed Libby six-mix and negative (glass beads) and positive (crocidolite asbestos) controls. Because manganese superoxide dismutase (MnSOD; SOD2) was the only gene upregulated significantly (p < 0.

View Article and Find Full Text PDF

New and effective treatment strategies are desperately needed for malignant mesothelioma (MM), an aggressive cancer with a poor prognosis. We have shown previously that acid-prepared mesoporous microspheres (APMS) are nontoxic after intrapleural or intraperitoneal (IP) administration to rodents. The purpose here was to evaluate the utility of APMS in delivering chemotherapeutic drugs to human MM cells in vitro and in two mouse xenograft models of MM.

View Article and Find Full Text PDF

Asbestos fibers cause chronic inflammation that may be critical to the development of malignant mesothelioma (MM). Two human MM cell lines (Hmeso, PPM Mill) were used in a SCID mouse xenograft model to assess time-dependent patterns of inflammation and tumor formation. After intraperitoneal (IP) injection of MM cells, mice were euthanized at 7, 14, and 30 days, and peritoneal lavage fluid (PLF) was examined for immune cell profiles and human and mouse cytokines.

View Article and Find Full Text PDF

Strategies were developed by which mesoporous microparticles were modified on their external surfaces with tetraethylene glycol (TEG), a protein, or both, leaving the pore surfaces available for modification with a separate moiety, such as a dye. Only particles bifunctionally modified with both TEG and a cell-specific antibody were taken up specifically by a targeted cancer cell line. In contrast to similarly functionalized nanoparticles, endocytosed microparticles were not contained within a lysosome.

View Article and Find Full Text PDF

Identifying and understanding the early molecular events that underscore mineral pathogenicity using in vitro screening tests is imperative, especially given the large number of synthetic and natural fibers and particles being introduced into the environment. The purpose of the work described here was to examine the ability of gene profiling (Affymetrix microarrays) to predict the pathogenicity of various materials in a human mesothelial cell line (LP9/TERT-1) exposed to equal surface area concentrations (15 x 10(6) or 75 x 10(6) microm(2)/cm(2)) of crocidolite asbestos, nonfibrous talc, fine titanium dioxide (TiO(2)), or glass beads for 8 or 24 h. Since crocidolite asbestos caused the greatest number of alterations in gene expression, multiplex analysis (Bio-Plex) of proteins released from LP9/TERT-1 cells exposed to crocidolite asbestos was also assessed to reveal if this approach might also be explored in future assays comparing various mineral types.

View Article and Find Full Text PDF

Nanomaterials are commonly defined as particles or fibers of less than 1 microm in diameter. For these reasons, they may be respirable in humans and have the potential, based upon their geometry, composition, size, and transport or durability in the body, to cause adverse effects on human health, especially if they are inhaled at high concentrations. Rodent inhalation models to predict the toxicity and pathogenicity of nanomaterials are prohibitive in terms of time and expense.

View Article and Find Full Text PDF

Little is known about the cellular mechanisms contributing to the development and chemoresistance of malignant mesothelioma (MM), an aggressive asbestos-associated tumor. A human mesothelial cell line (LP9/TERT-1) and isolated human pleural mesothelial cells showed rapid and protracted asbestos-induced cAMP response element binding protein (CREB1) phosphorylation, which was inhibited in LP9/TERT-1 cells by small molecule inhibitors of epidermal growth factor receptor phosphorylation and protein kinase A. Asbestos increased expression of several CREB target genes (c-FOS, EGR-1, MKP1, BCL2, and MMP13) and apoptosis, which was enhanced using small interfering CREB.

View Article and Find Full Text PDF

Inhalation of asbestos and oxidant-generating pollutants causes injury and compensatory proliferation of lung epithelium, but the signaling mechanisms that lead to these responses are unclear. We hypothesized that a protein kinase (PK)Cdelta-dependent PKD pathway was able to regulate downstream mitogen-activated protein kinases, affecting pro- and anti-apoptotic responses to asbestos. Elevated levels of phosphorylated PKD (p-PKD) were observed in distal bronchiolar epithelial cells of mice inhaling asbestos.

View Article and Find Full Text PDF