Modifying the optical and electronic properties of crystalline organic thin films is of great interest for improving the performance of modern organic semiconductor devices. Therein, the statistical mixing of molecules to form a solid solution provides an opportunity to fine-tune optical and electronic properties. Unfortunately, the diversity of intermolecular interactions renders mixed organic crystals highly complex, and a holistic picture is still lacking.
View Article and Find Full Text PDFThe photophysics of organic semiconductor (OSC) thin films or crystals has garnered significant attention in recent years since a comprehensive theoretical understanding of the various processes occurring upon photoexcitation is crucial for assessing the efficiency of OSC materials. To date, research in this area has relied on methods using Frenkel-Holstein Hamiltonians, calculations of the GW-Bethe-Salpeter equation with periodic boundaries, or cluster-based approaches using quantum chemical methods, with each of the three approaches having distinct advantages and disadvantages. In this work, we introduce an optimally tuned, range-separated time-dependent density functional theory approach to accurately reproduce the total and polarization-resolved absorption spectra of pentacene, tetracene, and perylene thin films, all representative OSC materials.
View Article and Find Full Text PDF