Publications by authors named "Maxime de Waegeneer"

During neuronal circuit formation, local control of axonal organelles ensures proper synaptic connectivity. Whether this process is genetically encoded is unclear and if so, its developmental regulatory mechanisms remain to be identified. We hypothesized that developmental transcription factors regulate critical parameters of organelle homeostasis that contribute to circuit wiring.

View Article and Find Full Text PDF

Wound response programs are often activated during neoplastic growth in tumors. In both wound repair and tumor growth, cells respond to acute stress and balance the activation of multiple programs, including apoptosis, proliferation, and cell migration. Central to those responses are the activation of the JNK/MAPK and JAK/STAT signaling pathways.

View Article and Find Full Text PDF

For more than 100 years, the fruit fly has been one of the most studied model organisms. Here, we present a single-cell atlas of the adult fly, Tabula , that includes 580,000 nuclei from 15 individually dissected sexed tissues as well as the entire head and body, annotated to >250 distinct cell types. We provide an in-depth analysis of cell type-related gene signatures and transcription factor markers, as well as sexual dimorphism, across the whole animal.

View Article and Find Full Text PDF

The Drosophila brain is a frequently used model in neuroscience. Single-cell transcriptome analysis, three-dimensional morphological classification and electron microscopy mapping of the connectome have revealed an immense diversity of neuronal and glial cell types that underlie an array of functional and behavioural traits in the fly. The identities of these cell types are controlled by gene regulatory networks (GRNs), involving combinations of transcription factors that bind to genomic enhancers to regulate their target genes.

View Article and Find Full Text PDF

Understanding how enhancers drive cell-type specificity and efficiently identifying them is essential for the development of innovative therapeutic strategies. In melanoma, the melanocytic (MEL) and the mesenchymal-like (MES) states present themselves with different responses to therapy, making the identification of specific enhancers highly relevant. Using massively parallel reporter assays (MPRAs) in a panel of patient-derived melanoma lines (MM lines), we set to identify and decipher melanoma enhancers by first focusing on regions with state-specific H3K27 acetylation close to differentially expressed genes.

View Article and Find Full Text PDF
Article Synopsis
  • Melanoma cells can change between two states: a melanocytic state (pigment-producing) and a mesenchymal-like state (more mobile), and there may be intermediate states between them.
  • Researchers studied multiple melanoma culture samples using advanced RNA sequencing techniques to identify gene regulatory networks (GRNs) that explain these states and found a shared regulatory system for both extreme and intermediate states.
  • The study revealed that an intermediate state has its own specific genetic controls and migratory behavior, confirmed by experiments, and showed that this state is not just a mix of cell types but has a stable and unique regulatory pattern.
View Article and Find Full Text PDF

This protocol explains how to perform a fast SCENIC analysis alongside standard best practices steps on single-cell RNA-sequencing data using software containers and Nextflow pipelines. SCENIC reconstructs regulons (i.e.

View Article and Find Full Text PDF

Single-cell technologies allow measuring chromatin accessibility and gene expression in each cell, but jointly utilizing both layers to map bona fide gene regulatory networks and enhancers remains challenging. Here, we generate independent single-cell RNA-seq and single-cell ATAC-seq atlases of the Drosophila eye-antennal disc and spatially integrate the data into a virtual latent space that mimics the organization of the 2D tissue using ScoMAP (Single-Cell Omics Mapping into spatial Axes using Pseudotime ordering). To validate spatially predicted enhancers, we use a large collection of enhancer-reporter lines and identify ~ 85% of enhancers in which chromatin accessibility and enhancer activity are coupled.

View Article and Find Full Text PDF

The Hippo signaling pathway and its two downstream effectors, the YAP and TAZ transcriptional coactivators, are drivers of tumor growth in experimental models. Studying mouse models, we show that YAP and TAZ can also exert a tumor-suppressive function. We found that normal hepatocytes surrounding liver tumors displayed activation of YAP and TAZ and that deletion of and in these peritumoral hepatocytes accelerated tumor growth.

View Article and Find Full Text PDF

The diversity of cell types and regulatory states in the brain, and how these change during aging, remains largely unknown. We present a single-cell transcriptome atlas of the entire adult Drosophila melanogaster brain sampled across its lifespan. Cell clustering identified 87 initial cell clusters that are further subclustered and validated by targeted cell-sorting.

View Article and Find Full Text PDF