Publications by authors named "Maxime de Ronne"

Little is known regarding the genes, compounds and physiological alternations that take place upon infection of black knot disease. This research aimed to unravel the genetic mechanism responsible for the resistance of Japanese plum ( L.) trees against black knot ( Schwein.

View Article and Find Full Text PDF

New selection methods, using trait-specific markers (marker-assisted selection (MAS)) and/or genome-wide markers (genomic selection (GS)), are becoming increasingly widespread in breeding programs. This new era requires innovative and cost-efficient solutions for genotyping. Reduction in sequencing cost has enhanced the use of high-throughput low-cost genotyping methods such as genotyping-by-sequencing (GBS) for genome-wide single-nucleotide polymorphism (SNP) profiling in large breeding populations.

View Article and Find Full Text PDF

Cannabis sativa L., previously concealed by prohibition, is now a versatile and promising plant, thanks to recent legalization, opening doors for medical research and industry growth. However, years of prohibition have left the Cannabis research community lagging behind in understanding Cannabis genetics and trait inheritance compared to other major crops.

View Article and Find Full Text PDF

Presented here are model Yang cycle, ethylene biosynthesis and signaling pathways in Cannabis sativa. C. sativa floral transcriptomes were used to predict putative ethylene-related genes involved in sexual plasticity in the species.

View Article and Find Full Text PDF

( L.) stands as a historically significant and culturally important plant, embodying economic, social, and medicinal relevance for human societies. However, years of prohibition and stigmatization have hindered the cannabis research community, which is hugely undersized and suffers from a scarcity of understanding of cannabis genetics and how key traits are expressed or inherited.

View Article and Find Full Text PDF

Differential gene expression profiles of various cannabis calli including non-embryogenic and embryogenic (i.e., rooty and embryonic callus) were examined in this study to enhance our understanding of callus development in cannabis and facilitate the development of improved strategies for plant regeneration and biotechnological applications in this economically valuable crop.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) are powerful statistical methods that detect associations between genotype and phenotype at genome scale. Despite their power, GWAS frequently fail to pinpoint the causal variant or the gene controlling a given trait in crop species. Assessing genetic variants other than single-nucleotide polymorphisms (SNPs) could alleviate this problem.

View Article and Find Full Text PDF

and -mediated hairy root transformation (HRT) assays are key components of the plant biotechnology and functional genomics toolkit. In this report, both and HRT were optimized in soybean using the reporter. Different parameters including strain, optical density of the bacterial cell culture (OD), co-cultivation media, soybean genotype, explant age, and acetosyringone addition and concentration were evaluated.

View Article and Find Full Text PDF

Despite the increased efficiency of sequencing technologies and the development of reduced-representation sequencing (RRS) approaches allowing high-throughput sequencing (HTS) of multiplexed samples, the per-sample genotyping cost remains the most limiting factor in the context of large-scale studies. For example, in the context of genomic selection (GS), breeders need genome-wide markers to predict the breeding value of large cohorts of progenies, requiring the genotyping of thousands candidates. Here, we introduce 3D-GBS, an optimized GBS procedure, to provide an ultra-high-throughput and ultra-low-cost genotyping solution for species with small to medium-sized genome and illustrate its use in soybean.

View Article and Find Full Text PDF

The SoyaGen project was a collaborative endeavor involving Canadian soybean researchers and breeders from academia and the private sector as well as international collaborators. Its aims were to develop genomics-derived solutions to real-world challenges faced by breeders. Based on the needs expressed by the stakeholders, the research efforts were focused on maximizing realized yield through optimization of maturity and improved disease resistance.

View Article and Find Full Text PDF

In the last decade, more than 70 quantitative trait loci (QTL) related to soybean [Glycine max (L.) Merr.] partial resistance (PR) against Phytophthora sojae have been identified by genome-wide association studies (GWAS).

View Article and Find Full Text PDF