The present study focuses on the application of fungal-based microbial fuel cells (FMFC) for the degradation of organic pollutants including Acetaminophen (APAP), Para-aminophenol (PAP), Sulfanilamide (SFA), and finally Methylene Blue (MB). The objective is to investigate the patterns of degradation (both individually and as a mixture solution) of the four compounds in response to fungal metabolic processes, with an emphasis on evaluating the possibility of generating energy. Linear Sweep Voltammetry (LSV) has been used for electrochemical analysis of the targeted compounds on a Glassy Carbon Electrode (GCE).
View Article and Find Full Text PDFCorrosion is a major problem resulting from acid gases found in natural gas being transported in pipelines. To solve this problem, high aspect ratio h-BN nanosheets have been incorporated and are properly assimilated in the CA matrix, this led to an increase in tortuous path of flow for the gas resulting in smooth, dense membrane samples causing exceptional permeability reduction. Hexagonal Boron Nitride (h-BN) nanosheets have been synthesized and incorporated into cellulose acetate (CA) matrix using solution casting method.
View Article and Find Full Text PDFNickel(II) tetrasulfonated phthalocyanine (p-NiTSPc)-modified carbon fiber microelectrode (CFME) was used for the first time to investigate the electrochemical quantification of diuron in an agrochemical formulation. The surface morphology and elementary analysis of unmodified carbon fiber microelectrode (CFME) and p-NiTSPc-CFME were performed using atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy (EDX), respectively. Cyclic voltammetry (CV) was used to investigate the electrochemical behaviour of diuron, while square wave voltammetry (SWV) was used for quantitative analysis of diuron.
View Article and Find Full Text PDFThe nonpathogenic filamentous fungus Scedosporium dehoogii was used for the first time to study the electrochemical biodegradation of acetaminophen (APAP). A carbon fiber microelectrode (CFME) modified by nickel tetrasulfonated phthalocyanine (p-NiTSPc) and a carbon paste electrode (CPE) modified with coffee husks (CH) were prepared to follow the kinetics of APAP biodegradation. The electrochemical response of APAP at both electrodes was studied by cyclic voltammetry and square wave voltammetry.
View Article and Find Full Text PDF