Dust particle growth in a plasma is a strongly disturbing phenomenon for the plasma equilibrium. It can induce many different types of low-frequency instabilities that can be experimentally observed, especially using high-speed imaging. A spectacular case has been observed in a krypton plasma where a huge density of dust particles is grown by material sputtering.
View Article and Find Full Text PDFIn complex plasmas, the trapped dust particle cloud is often characterized by a central dust-free region ("void"). The void induces a spatial inhomogeneity of the dust particle distribution and is at the origin of many intricate unstable phenomena. One type of this kind of behavior is the so-called heartbeat instability consisting of successive contractions and expansions of the void.
View Article and Find Full Text PDFInstabilities in dusty plasmas are frequent phenomena. We show that some instabilities can be described by mixed-mode oscillations often encountered in chemical systems or neuronal dynamics and studied through dynamical system theories. The time evolution of these instabilities is studied through the change in the associated waveform.
View Article and Find Full Text PDFDust formation and growth in plasmas are in most cases continuous cyclic phenomena. We show that the growth of new dust generations takes place in a dust-free region, usually called a void, in the dust cloud. The three-step process of new dust generation is detailed thanks to the correlation between electrical, optical, and ex situ diagnostics.
View Article and Find Full Text PDF