Publications by authors named "Maxime Langevin"

Molecular generative artificial intelligence is drawing significant attention in the drug design community, with several experimentally validated proof of concepts already published. Nevertheless, generative models are known for sometimes generating unrealistic, unstable, unsynthesizable, or uninteresting structures. This calls for methods to constrain those algorithms to generate structures in drug-like portions of the chemical space.

View Article and Find Full Text PDF

Synthetic yield prediction using machine learning is intensively studied. Previous work has focused on two categories of data sets: high-throughput experimentation data, as an ideal case study, and data sets extracted from proprietary databases, which are known to have a strong reporting bias toward high yields. However, predicting yields using published reaction data remains elusive.

View Article and Find Full Text PDF

Despite growing interest and success in automated in-silico molecular design, questions remain regarding the ability of goal-directed generation algorithms to perform unbiased exploration of novel chemical spaces. A specific phenomenon has recently been highlighted: goal-directed generation guided with machine learning models produce molecules with high scores according to the optimization model, but low scores according to control models, even when trained on the same data distribution and the same target. In this work, we show that this worrisome behavior is actually due to issues with the predictive models and not the goal-directed generation algorithms.

View Article and Find Full Text PDF

One of the major applications of generative models for drug discovery targets the lead-optimization phase. During the optimization of a lead series, it is common to have scaffold constraints imposed on the structure of the molecules designed. Without enforcing such constraints, the probability of generating molecules with the required scaffold is extremely low and hinders the practicality of generative models for de novo drug design.

View Article and Find Full Text PDF