Publications by authors named "Maxime Lamontagne"

Background: Calcific aortic valve stenosis (CAVS) is a frequent and life-threatening cardiovascular disease for which there is currently no medical treatment available. To date, only 2 genes, and , have been identified as causal for CAVS. We aimed to identify additional susceptibility genes for CAVS.

View Article and Find Full Text PDF

Background: Inherited mutations in SERPINA1 coding for the alpha-1 antitrypsin (A1AT) protein is the only well established cause of hereditary emphysema. We aimed to identify the genetic ecause of early-onset emphysema in a five-generation French-Canadian family free of A1AT deficiency.

Methods: Between Dec 1, 2014, and April 1, 2017, we investigated 63 individuals from a single pedigree, including 55 with DNA available.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is the leading cause of respiratory mortality worldwide. Genetic risk loci provide new insights into disease pathogenesis. We performed a genome-wide association study in 35,735 cases and 222,076 controls from the UK Biobank and additional studies from the International COPD Genetics Consortium.

View Article and Find Full Text PDF

The HOX genes are transcription factors that are expressed in coordinated spatiotemporal patterns to ensure normal development. Ectopic expression may instead lead to the development and progression of tumors. Genetic polymorphisms in the regions of four HOX gene clusters were tested for association with lung cancer in 420 cases and 3,151 controls.

View Article and Find Full Text PDF

Inadequate DNA repair is implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, the mechanisms that underlie inadequate DNA repair in COPD are poorly understood. We applied an integrative genomic approach to identify DNA repair genes and pathways associated with COPD severity.

View Article and Find Full Text PDF
Article Synopsis
  • GWAS pinpointed the 15q25.1 locus as a key area linked to lung cancer risk, but the specific mechanisms were unclear.
  • Analysis of data from over 42,000 individuals and eQTL data from 409 helped identify significant pathways related to lung cancer, including the neuroactive ligand-receptor interaction pathway.
  • Findings revealed that specific pathways and gene interactions play a crucial role in understanding the biological basis of lung cancer, offering new insights into its etiology.
View Article and Find Full Text PDF

Causal genes of chronic obstructive pulmonary disease (COPD) remain elusive. The current study aims at integrating genome-wide association studies (GWAS) and lung expression quantitative trait loci (eQTL) data to map COPD candidate causal genes and gain biological insights into the recently discovered COPD susceptibility loci. Two complementary genomic datasets on COPD were studied.

View Article and Find Full Text PDF

Calcific aortic valve stenosis (CAVS) is a common and life-threatening heart disease and the current treatment options cannot stop or delay its progression. A GWAS on 1009 cases and 1017 ethnically matched controls was combined with a large-scale eQTL mapping study of human aortic valve tissues (n = 233) to identify susceptibility genes for CAVS. Replication was performed in the UK Biobank, including 1391 cases and 352,195 controls.

View Article and Find Full Text PDF

Background: A recent study identified DCHS1 as a causal gene for mitral valve prolapse. The goal of this study is to investigate the presence and frequency of known and novel variants in this gene in 100 asymptomatic patients with moderate to severe organic mitral regurgitation.

Methods: DNA sequencing assays were developed for two previously identified functional missense variants, namely p.

View Article and Find Full Text PDF

Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genome-wide association study (GWAS) analysis of lung cancer in 29,266 cases and 56,450 controls. We identified 18 susceptibility loci achieving genome-wide significance, including 10 new loci.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide. We performed a genetic association study in 15,256 cases and 47,936 controls, with replication of select top results (P < 5 × 10) in 9,498 cases and 9,748 controls. In the combined meta-analysis, we identified 22 loci associated at genome-wide significance, including 13 new associations with COPD.

View Article and Find Full Text PDF

Background: Reduced lung function in patients with chronic obstructive pulmonary disease (COPD) is likely due to both environmental and genetic factors. We report here a targeted high-throughput DNA sequencing approach to identify new and previously known genetic variants in a set of candidate genes for COPD.

Methods: Exons in 22 genes implicated in lung development as well as 61 genes and 10 genomic regions previously associated with COPD were sequenced using individual DNA samples from 68 cases with moderate or severe COPD and 66 controls matched for age, gender and smoking.

View Article and Find Full Text PDF

Bicuspid aortic valve (BAV) is the most frequent congenital heart defect and has a male predominance of 3 to 1. A large proportion of patients develop valvular and aortic complications. Despite the high prevalence of BAV, its cause and genetic origins remain elusive.

View Article and Find Full Text PDF

Background: Calcific aortic valve stenosis (AS) is a life-threatening disease with no medical therapy. The genetic architecture of AS remains elusive. This study combines genome-wide association studies, gene expression, and expression quantitative trait loci mapping in human valve tissues to identify susceptibility genes of AS.

View Article and Find Full Text PDF

Methods: Whole-genome genotyping and gene expression analyses in blood of 22 BMS and 23 AMS offspring from 19 mothers were conducted using Illumina HumanOmni-5-Quad and HumanHT-12 v4 Expression BeadChips, respectively. Using PLINK we analyzed interactions between offspring gene variations and maternal surgical status on offspring gene expression levels. Altered biological functions and pathways were identified and visualized using DAVID and Ingenuity Pathway Analysis.

View Article and Find Full Text PDF

BPI fold containing family A, member 1 (BPIFA1) and BPIFB1 are putative innate immune molecules expressed in the upper airways. Because of their hypothesized roles in airway defense, these molecules may contribute to lung disease severity in cystic fibrosis (CF). We interrogated BPIFA1/BPIFB1 single-nucleotide polymorphisms in data from an association study of CF modifier genes and found an association of the G allele of rs1078761 with increased lung disease severity (P = 2.

View Article and Find Full Text PDF

Recent studies identified three genetic loci reproducibly associated with lung cancer in populations of European ancestry, namely 15q25, 5p15 and 6p21. The goals of this study are first to confirm whether these loci are associated with lung cancer in a French Canadian population and second to identify disease-associated single nucleotide polymorphisms (SNPs) influencing messenger RNA (mRNA) expression levels of genes in the lung, that is expression quantitative trait loci (eQTLs). SNPs were genotyped in 420 patients undergoing lung cancer surgery and compared with 3151 controls of European ancestry.

View Article and Find Full Text PDF

Background: COPD is a complex chronic disease with poorly understood pathogenesis. Integrative genomic approaches have the potential to elucidate the biological networks underlying COPD and lung function. We recently combined genome-wide genotyping and gene expression in 1111 human lung specimens to map expression quantitative trait loci (eQTL).

View Article and Find Full Text PDF

Cigarette smoke is well known for its adverse effects on human health, especially on the lungs. Basic research is essential to identify the mechanisms involved in the development of cigarette smoke-related diseases, but translation of new findings from pre-clinical models to the clinic remains difficult. In the present study, we aimed at comparing the gene expression signature between the lungs of human smokers and mice exposed to cigarette smoke to identify the similarities and differences.

View Article and Find Full Text PDF

Genome-Wide Association Study (GWAS) meta-analyses have identified a strong association signal for lung function, which maps to a region on 4q24 containing two oppositely transcribed genes: glutathione S-transferase, C-terminal domain containing (GSTCD) and integrator complex subunit 12 (INTS12). Both genes were found to be expressed in a range of human airway cell types. The promoter regions and transcription start sites were determined in mRNA from human lung and a novel splice variant was identified for each gene.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of mortality worldwide. Recent genome-wide association studies (GWAS) have identified robust susceptibility loci associated with COPD. However, the mechanisms mediating the risk conferred by these loci remain to be found.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) have identified loci reproducibly associated with pulmonary diseases; however, the molecular mechanism underlying these associations are largely unknown. The objectives of this study were to discover genetic variants affecting gene expression in human lung tissue, to refine susceptibility loci for asthma identified in GWAS studies, and to use the genetics of gene expression and network analyses to find key molecular drivers of asthma. We performed a genome-wide search for expression quantitative trait loci (eQTL) in 1,111 human lung samples.

View Article and Find Full Text PDF

Cigarette smoking is the leading risk factor for lung cancer. To identify genes deregulated by smoking and to distinguish gene expression changes that are reversible and persistent following smoking cessation, we carried out genome-wide gene expression profiling on nontumor lung tissue from 853 patients with lung cancer. Gene expression levels were compared between never and current smokers, and time-dependent changes in gene expression were studied in former smokers.

View Article and Find Full Text PDF