For a generation or more, the mass spectrometry that developed at the frontier of molecular biology was worlds apart from isotope ratio mass spectrometry, a label-free approach done on optimized gas-source magnetic sector instruments. Recent studies show that electrospray-ionization Orbitraps and other mass spectrometers widely used in the life sciences can be fine-tuned for high-precision isotope ratio analysis. Since isotope patterns form everywhere in nature based on well-understood principles, intramolecular isotope measurements allow unique insights into a fascinating range of research topics.
View Article and Find Full Text PDFPosition-specific isotope analysis by Nuclear Magnetic Resonance spectrometry was employed to study the C intramolecular isotopic fractionation associated with the migration of organic substrates through different stationary phases chromatography columns. Liquid chromatography is often used to isolate compounds prior to their isotope analysis and this purification step potentially alters the isotopic composition of target compounds introducing a bias in the later measured data. Moreover, results from liquid chromatography can yield the sorption parameters needed in reactive transport models that predict the transport and fate of organic contaminants to in the environment.
View Article and Find Full Text PDFStable isotopes have been widely used to monitor remediation of environmental contaminants over the last decades. This approach gives a good mechanistic description of natural or assisted degradation of organic pollutants, such as methyl tert-butyl ether (MTBE). Since abiotic degradation seems to be the most promising assisted attenuation method, the isotopic fractionation associated with oxidation and hydrolysis processes need to be further investigated in order to understand better these processes and make their monitoring more efficient.
View Article and Find Full Text PDFWithin the food and pharmaceutical industries, there is an increasing legislative requirement for the accurate labeling of the product's origin. A key feature of this is to indicate whether the product is of natural or synthetic origin. With reference to this context, we have investigated three alkaloids commonly exploited for human use: nicotine, atropine, and caffeine.
View Article and Find Full Text PDFIn the article (Romek et al. 2013) we reported the values of δN (‰) and δC (‰) obtained by.
View Article and Find Full Text PDFMany O-methyl and N-methyl groups in natural products are depleted in C relative to the rest of the molecule. These methyl groups are derived from the C-1 tetrahydrofolate pool via l-methionine, the principle donor of methyl units. Depletion could occur at a number of steps in the pathway.
View Article and Find Full Text PDFThe enrichment factor (ε) is a common way to express Isotope Effects (IEs) associated with a phenomenon. Many studies determine ε using a Rayleigh-plot, which needs multiple data points. More recent articles describe an alternative method using the Rayleigh equation that allows the determination of ε using only one experimental point, but this method is often subject to controversy.
View Article and Find Full Text PDFThe relationship between the strength of the intermolecular interaction in liquid and the position-specific C fractionation observed during distillation was investigated. A range of molecules showing different intermolecular interactions in terms of mode and intensity were incorporated in the study. Although it had previously been suggested that during evaporation the diffusive C isotope effect in the thin liquid layer interfaced with vapor is not position-specific, herein we show that this is not the case.
View Article and Find Full Text PDFBIOSCREEN is a well-known simple tool for evaluating the transport of dissolved contaminants in groundwater, ideal for rapid screening and teaching. This work extends the BIOSCREEN model for the calculation of stable isotope ratios in contaminants. A three-dimensional exact solution of the reactive transport from a patch source, accounting for fractionation by first-order decay and/or sorption, is used.
View Article and Find Full Text PDFIn forensic environmental investigations the main issue concerns the inference of the original source of the pollutant for determining the liable party. Isotope measurements in geochemistry, combined with complimentary techniques for contaminant identification, have contributed significantly to source determination at polluted sites. In this work we have determined the intramolecular (13)C profiles of several molecules well-known as pollutants.
View Article and Find Full Text PDFPosition-specific isotope effects (PSIEs) have been measured by isotope ratio monitoring (13)C nuclear magnetic resonance spectrometry during the evaporation of 10 liquids of different polarities under 4 evaporation modes (passive evaporation, air-vented evaporation, low pressure evaporation, distillation). The observed effects are used to assess the validity of the Craig-Gordon isotope model for organic liquids. For seven liquids the overall isotope effect (IE) includes a vapor-liquid contribution that is strongly position-specific in polar compounds but less so in apolar compounds and a diffusive IE that is not position-specific, except in the alcohols, ethanol and propan-1-ol.
View Article and Find Full Text PDFTrue quantitative analysis of concentrated samples by (1)H NMR is made very difficult by Radiation Damping. A novel NMR sequence (inspired by the WET NMR sequence and by Outer Volume Saturation methods) is therefore proposed to suppress this phenomenon by reducing the spatial area and consequently the number of spins contributing to the signal detected. The size of the detected volume can be easily chosen in a large range and line shape distortions are avoided thanks to a uniform signal suppression of the outer volume.
View Article and Find Full Text PDFIsotopic fractionation of pollutants in terrestrial or aqueous environments is a well-recognized means by which to track different processes during remediation. As a complement to the common practice of measuring the change in isotope ratio for the whole molecule using isotope ratio monitoring by mass spectrometry (irm-MS), position-specific isotope analysis (PSIA) can provide further information that can be exploited to investigate source and remediation of soil and water pollutants. Position-specific fractionation originates from either degradative or partitioning processes.
View Article and Find Full Text PDFWe aim at predicting the effect of structure and isotopic substitutions on the equilibrium vapour pressure isotope effect of various organic compounds (alcohols, acids, alkanes, alkenes and aromatics) at intermediate temperatures. We attempt to explore quantitative structure property relationships by using artificial neural networks (ANN); the multi-layer perceptron (MLP) and compare the performances of it with multi-linear regression (MLR). These approaches are based on the relationship between the molecular structure (organic chain, polar functions, type of functions, type of isotope involved) of the organic compounds, and their equilibrium vapour pressure.
View Article and Find Full Text PDFIntramolecular (13)C composition gives access to new information on the (bio) synthetic history of a given molecule. Isotopic (13)C NMR spectrometry provides a general tool for measuring the position-specific (13)C content. As an emerging technique, some aspects of its performance are not yet fully delineated.
View Article and Find Full Text PDFSince exclusively breast-suckled infants obtain their nutrient only from their mother's milk, it might be anticipated that a correlation will exist between the (15)N/(14)N isotope ratios of amino acids of protein of young infants and those supplied by their mother. The work presented here aimed to determine whether amino nitrogen transfer from human milk to infant hair protein synthesized within the first month of life conserves the maternal isotopic signature or whether post-ingestion fractionation dominates the nitrogen isotope spectrum. The study was conducted at 1 month post-birth on 100 mother-infant pairs.
View Article and Find Full Text PDFRationale: In isotope tracer experiments used in nutritional studies, it is frequently desirable both to determine the (15)N/(14)N ratios of target compounds and to quantify these compounds. This report shows how this can be achieved in a single chromatographic run for protein amino acids using an isotope ratio mass spectrometer.
Methods: Protein hydrolysis by acidic digestion was used to release amino acids, which were then derivatized as their N-pivaloyl-O-isopropyl esters.