Whole-genome sequencing has become the method of choice for bacterial outbreak investigation, with most clinical and public health laboratories currently routinely using short-read Illumina sequencing. Recently, long-read Oxford Nanopore Technologies (ONT) sequencing has gained prominence and may offer advantages over short-read sequencing, particularly with the recent introduction of the R10 chemistry, which promises much lower error rates than the R9 chemistry. However, limited information is available on its performance for bacterial single-nucleotide polymorphism (SNP)-based outbreak investigation.
View Article and Find Full Text PDFIn genome evolution, genetic variants are the source of diversity, which natural selection acts upon. Treatment of human tuberculosis (TB) induces a strong selection pressure for the emergence of antibiotic resistance-conferring variants in the infecting Mycobacterium tuberculosis (MTB) strains. MTB evolution in response to treatment has been intensively studied and mainly attributed to point substitutions.
View Article and Find Full Text PDFDNA acquisition via genetic recombination is considered advantageous as it has the potential to bring together beneficial mutations that emerge independently within a population. Furthermore, recombination is considered to contribute to the maintenance of genome stability by purging slightly deleterious mutations. The prevalence of recombination differs among prokaryotic species and depends on the accessibility of DNA transfer mechanisms.
View Article and Find Full Text PDFThe classification of human genetic variants into deleterious and neutral is a challenging issue, whose complexity is rooted in the large variety of biophysical mechanisms that can be responsible for disease conditions. For non-synonymous mutations in structured proteins, one of these is the protein stability change, which can lead to loss of protein structure or function. We developed a stability-driven knowledge-based classifier that uses protein structure, artificial neural networks and solvent accessibility-dependent combinations of statistical potentials to predict whether destabilizing or stabilizing mutations are disease-causing.
View Article and Find Full Text PDF