Publications by authors named "Maxime Denis"

Article Synopsis
  • - A novel method for creating substituted pyridines from iodoenones is introduced, using a two-step process that includes Sonogashira coupling with a free alkyne.
  • - The process involves a sequence of chemical reactions, including thiophenol treatment and a Michael-retro-Michael process, leading to the final pyridine structure.
  • - This technique allows for the incorporation of various substituents at different positions on the pyridine ring, expanding possibilities for synthesizing bioactive heterocycles.
View Article and Find Full Text PDF

Raman microscopy can reveal a compound-specific vibrational "fingerprint" from micrograms of material with no sample preparation. We expect this increasingly available instrumentation to routinely assist synthetic chemists in structure determination; however, interpreting the information-dense spectra can be challenging for unreported compounds. Appropriate theoretical calculations using the highly efficient rSCAN-3c method can accurately predict peak positions but are less precise in matching peak heights.

View Article and Find Full Text PDF

With the deepening of our understanding of adaptive immunity at the cellular and molecular level, targeting antigens directly to immune cells has proven to be a successful strategy to develop innovative and potent vaccines. Indeed, it offers the potential to increase vaccine potency and/or modulate immune response quality while reducing off-target effects. With mRNA-vaccines establishing themselves as a versatile technology for future applications, in the last years several approaches have been explored to target nanoparticles-enabled mRNA-delivery systems to immune cells, with a focus on dendritic cells.

View Article and Find Full Text PDF
Article Synopsis
  • The rise of antimicrobial resistance (AMR) in bacterial species calls for new treatment strategies, with pathogen infection prevention being a key focus.
  • Vaccines have historically been the most effective way to prevent infectious diseases, and this review highlights the importance of developing vaccine formulations specifically targeting AMR pathogens.
  • It discusses the challenges of creating multi-antigen vaccines, the types of antigens and adjuvants used, and the need for combining existing knowledge with advanced technology to enhance vaccine development against these resistant pathogens.
View Article and Find Full Text PDF

Hypervalent iodine reagents are among the most fascinating reagents described in the last 30 years since they allow a plethora of different transformations and are environmentally friendly compounds that avoid the use of toxic heavy metals in most cases. Hence, their versatility has been widely used in multi-step syntheses for the formation of complex structures. In particular, the use of iodanes can easily generate complexity from simple substrates, leading to polyfunctionalized systems that allow the rapid formation of natural products or related intricate architectures.

View Article and Find Full Text PDF

Carbohydrate-protein interactions are key for cell-cell and host-pathogen recognition and thus, emerged as viable therapeutic targets. However, their hydrophilic nature poses major limitations to the conventional development of drug-like inhibitors. To address this shortcoming, four fragment libraries were screened to identify metal-binding pharmacophores (MBPs) as novel scaffolds for inhibition of Ca-dependent carbohydrate-protein interactions.

View Article and Find Full Text PDF

Langerin is a mammalian C-type lectin expressed on Langerhans cells in the skin. As an innate immune cell receptor, Langerin is involved in coordinating innate and adaptive immune responses against various incoming threats. We have previously reported a series of thiazolopyrimidines as murine Langerin ligands.

View Article and Find Full Text PDF

DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) is a pattern recognition receptor expressed on immune cells and involved in the recognition of carbohydrate signatures present on various pathogens, including HIV, Ebola, and SARS-CoV-2. Therefore, developing inhibitors blocking the carbohydrate-binding site of DC-SIGN could generate a valuable tool to investigate the role of this receptor in several infectious diseases. Herein, we performed a fragment-based ligand design using 4-quinolone as a scaffold.

View Article and Find Full Text PDF

Aims: The adenylate cyclase type 9 (ADCY9) gene appears to determine atherosclerotic outcomes in patients treated with dalcetrapib. In mice, we recently demonstrated that Adcy9 inactivation potentiates endothelial function and inhibits atherogenesis. The objective of this study was to characterize the contribution of ADCY9 to the regulation of endothelial signalling pathways involved in atherosclerosis.

View Article and Find Full Text PDF

Two orthogonal, metal free click reactions, enabled to glycosylate ubiquitin and its mutant A28C forming two protein scaffolds with high affinity for BambL, a lectin from the human pathogen . A new fucoside analogue, with high affinity with BambL, firstly synthetized and co-crystallized with the protein target, provided the insights for sugar determinants grafting onto ubiquitin. Three ubiquitin-based glycosides were thus assembled.

View Article and Find Full Text PDF

Indole alkaloids are important natural compounds with interesting bio-activities that can be found in various species belonging to the Amaryllidaceae, Apocynaceae, or Strychnaceae families. Although these compounds have different connections, substituents, and functionalities, their main core can be produced the formation of a common functionalized tetracyclic subunit, which is rapidly obtained by an oxidative de-aromatization process mediated by a hypervalent iodine reagent from an inexpensive phenol containing a lactate moiety as the chiral auxiliary. A subsequent stereoselective aza-Michael addition and an intramolecular Heck-type reaction lead to the formation of a common key intermediate.

View Article and Find Full Text PDF

Paramagnetic restraints have been used in biomolecular NMR for the last three decades to elucidate and refine biomolecular structures, but also to characterize protein-ligand interactions. A common technique to generate such restraints in proteins, which do not naturally contain a (paramagnetic) metal, consists in the attachment to the protein of a lanthanide-binding-tag (LBT). In order to design such LBTs, it is important to consider the efficiency and stability of the conjugation, the geometry of the complex (conformational exchanges and coordination) and the chemical inertness of the ligand.

View Article and Find Full Text PDF

Background: Given the link between cholesterol and activation of inflammation via interleukin 1β (IL-1β), we tested the effects of IL-1β inhibition on atherosclerotic calcification in mice. Patients with familial hypercholesterolemia develop extensive aortic calcification and calcific aortic stenosis. Although statins delay this process, low-density lipoprotein (LDL) cholesterol lowering alone is not enough to avert it.

View Article and Find Full Text PDF

Background: Impairment of acid sphingomyelinase (SMase) results in accumulation of sphingomyelin (SM) and cholesterol in late endosomes, the hallmarks of a lysosomal storage disease.

Objective: We describe cellular lipid metabolism in fibroblasts from two patients with novel compound heterozygote mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene manifesting as Niemann-Pick disease type B (NPB) and demonstrate mechanisms to overcome the storage defect.

Methods: Using biochemical assays and confocal microscopy, we provide evidence that accumulated lysosomal SM and cholesterol can be released by different treatments.

View Article and Find Full Text PDF

Proprotein convertase subtilisin/kexin-9 (PCSK9) enhances the degradation of hepatic low-density lipoprotein receptor (LDLR). Deletion of PCSK9, and loss-of-function mutants in humans result in lower levels of circulating LDL-cholesterol and a strong protection against coronary heart disease. Accordingly, the quest for PCSK9 inhibitors has major clinical implications.

View Article and Find Full Text PDF

Background: The proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes independently of its enzymatic activity the degradation of the low-density lipoprotein (LDL) receptor. PCSK9 gain of function in humans leads to autosomal dominant hypercholesterolemia, whereas the absence of functional PCSK9 results in ≈7-fold lower levels of LDL cholesterol. This suggests that lowering PCSK9 may protect against atherosclerosis.

View Article and Find Full Text PDF

Objective: Patients with familial hypercholesterolemia (FH) due mutations in the low-density lipoprotein receptor (LDLR) suffer premature aortic calcification, an effect that is age- and gene dosage-dependent and cholesterol level independent later in life. To better understand this process, we examined a murine model.

Methods: We compared chow fed Ldlr(-/-) mice to controls at 6, 12 and 18 months and on a Western diet (WD) at 6 months.

View Article and Find Full Text PDF

Macrophage foam cell is the predominant cell type in atherosclerotic lesions. Removal of excess cholesterol from macrophages thus offers effective protection against atherosclerosis. Here we report that a protein kinase A (PKA)-anchoring inhibitor, st-Ht31, induces robust cholesterol/phospholipid efflux, and ATP-binding cassette transporter A1 (ABCA1) greatly facilitates this process.

View Article and Find Full Text PDF

ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol efflux to lipid-poor apolipoprotein A-I (apoA-I) and generates HDL. Here, we demonstrate that ABCA1 also directly mediates the production of apoA-I free microparticles. In baby hamster kidney (BHK) cells and RAW macrophages, ABCA1 expression led to lipid efflux in the absence of apoA-I and released large microparticles devoid of apoB and apoE.

View Article and Find Full Text PDF

ATP-binding cassette transporter (ABC) A1 is required for the lipidation of apolipoprotein A-I to generate high density lipoprotein (HDL). This process is proposed to occur through a retro-endocytosis pathway in which apoA-I internalizes with ABCA1 and generates HDL from the endosomal compartments before resecretion. The aim of this study was to determine the route of apoA-I endocytosis and whether endocytosis contributes to HDL biogenesis.

View Article and Find Full Text PDF

It is well accepted that both apolipoprotein A-I (apoA-I) and ABCA1 play crucial roles in HDL biogenesis and in the human atheroprotective system. However, the nature and specifics of apoA-I/ABCA1 interactions remain poorly understood. Here, we present evidence for a new cellular apoA-I binding site having a 9-fold higher capacity to bind apoA-I compared with the ABCA1 site in fibroblasts stimulated with 22-(R)-hydroxycholesterol/9-cis-retinoic acid.

View Article and Find Full Text PDF

ATP-binding cassette transporter A1 (ABCA1) is known to mediate cholesterol efflux to lipid-poor apolipoprotein A-I. In addition, ABCA1 has been shown to influence functions of the plasma membrane, such as endocytosis and phagocytosis. Here, we report that ABCA1 expression results in a significant redistribution of cholesterol and sphingomyelin from rafts to non-rafts.

View Article and Find Full Text PDF

Atherosclerosis is a disease of blood vessel walls that is thought to be initiated as a reaction of insults to the endothelium. The complex sequence of cellular events that begins with focal inflammation leads to the accumulation of leukocytes in the subendothelial layer and unrestricted uptake of oxidized lipoproteins by macrophages and smooth muscle cells, leading to foam cell formation. Vascular endothelial cells do not undergo the foam cell transformation and do not accumulate cholesterol in atherosclerotic plaques to the same extent as macrophages or smooth muscle cells.

View Article and Find Full Text PDF

Although cholesterol is synthesized in the endoplasmic reticulum (ER), compared with other cellular membranes, ER membrane has low cholesterol (3-6%). Most of the molecular machinery that regulates cellular cholesterol homeostasis also resides in the ER. Little is known about how cholesterol itself affects the ER membrane.

View Article and Find Full Text PDF

We previously reported that human Niemann-Pick Disease type B (NPD-B) is associated with low HDL. In this study, we investigated the pathophysiology of this HDL deficiency by examining both HDL samples from NPD-B patients and nascent high density lipoprotein (LpA-I) generated by incubation of lipid-free apolipoprotein A-I (apoA-I) with NPD-B fibroblasts. Interestingly, both LpA-I and HDL isolated from patient plasma had a significant increase in sphingomyelin (SM) mass ( approximately 50-100%).

View Article and Find Full Text PDF