Publications by authors named "Maxime Delcour"

Children with neurodevelopmental disorders, such as developmental coordination disorder (DCD), exhibit gross to fine sensorimotor impairments, reduced physical activity and interactions with the environment and people. This disorder co-exists with cognitive deficits, executive dysfunctions and learning impairments. Previously, we demonstrated in rats that limited amounts and atypical patterns of movements and somatosensory feedback during early movement restriction manifested in adulthood as degraded postural and locomotor abilities, and musculoskeletal histopathology, including muscle atrophy, hyperexcitability within sensorimotor circuitry and maladaptive cortical plasticity, leading to functional disorganization of the primary somatosensory and motor cortices in the absence of cortical histopathology.

View Article and Find Full Text PDF

Cerebral palsy (CP) is a complex syndrome of various sensory, motor and cognitive deficits. Its prevalence has recently decreased in some developed countries and its symptoms have also shifted since the 1960s. From the 1990s, CP has been associated with prematurity, but recent epidemiologic studies show reduced or absent brain damage, which recapitulates developmental coordination disorder (DCD).

View Article and Find Full Text PDF

Motor control and body representations in the central nervous system are built, i.e., patterned, during development by sensorimotor experience and somatosensory feedback/reafference.

View Article and Find Full Text PDF

Intrauterine ischemia-hypoxia is detrimental to the developing brain and leads to white matter injury (WMI), encephalopathy of prematurity (EP), and often to cerebral palsy (CP), but the related pathophysiological mechanisms remain unclear. In prior studies, we used mild intrauterine hypoperfusion (MIUH) in rats to successfully reproduce the diversity of clinical signs of EP, and some CP symptoms. Briefly, MIUH led to inflammatory processes, diffuse gray and WMI, minor locomotor deficits, musculoskeletal pathologies, neuroanatomical and functional disorganization of the primary somatosensory and motor cortices, delayed sensorimotor reflexes, spontaneous hyperactivity, deficits in sensory information processing, memory and learning impairments.

View Article and Find Full Text PDF

Motor control and body representation in the central nervous system (CNS) as well as musculoskeletal architecture and physiology are shaped during development by sensorimotor experience and feedback, but the emergence of locomotor disorders during maturation and their persistence over time remain a matter of debate in the absence of brain damage. By using transient immobilization of the hind limbs, we investigated the enduring impact of postnatal sensorimotor restriction (SMR) on gait and posture on treadmill, age-related changes in locomotion, musculoskeletal histopathology and Hoffmann reflex in adult rats without brain damage. SMR degrades most gait parameters and induces overextended knees and ankles, leading to digitigrade locomotion that resembles equinus.

View Article and Find Full Text PDF

Cerebral palsy (CP) describes a group of neurodevelopmental disorders of posture and movement that are frequently associated with sensory, behavioral, and cognitive impairments. The clinical picture of CP has changed with improved neonatal care over the past few decades, resulting in higher survival rates of infants born very preterm. Children born preterm seem particularly vulnerable to perinatal hypoxia-ischemia insults at birth.

View Article and Find Full Text PDF

Early brain damage, such as white matter damage (WMD), resulting from perinatal hypoxia-ischemia in preterm and low birth weight infants represents a high risk factor for mortality and chronic disabilities, including sensory, motor, behavioral and cognitive disorders. In previous studies, we developed a model of WMD based on prenatal ischemia (PI), induced by unilateral ligation of uterine artery at E17 in pregnant rats. We have shown that PI reproduced some of the main deficits observed in preterm infants, such as white and gray matter damage, myelination deficits, locomotor, sensorimotor, and short-term memory impairments, as well as related musculoskeletal and neuroanatomical histopathologies [1-3].

View Article and Find Full Text PDF

Perinatal brain injury including white matter damage (WMD) is highly related to sensory, motor or cognitive impairments in humans born prematurely. Our aim was to examine the neuroanatomical, functional and behavioral changes in adult rats that experienced prenatal ischemia (PI), thereby inducing WMD. PI was induced by unilateral uterine artery ligation at E17 in pregnant rats.

View Article and Find Full Text PDF

Early brain injury including white matter damage (WMD) appears strongly correlated to perinatal hypoxia-ischemia and adverse neurological outcomes in preterm survivors. Indeed, WMD has been widely associated with subtle to major motor disturbances, sensory, behavioral and cognitive impairments in preterm infants who afterward develop cerebral palsy (CP). Prenatal ischemia (PI) has been shown to reproduce the main features of WMD observed in preterm infants.

View Article and Find Full Text PDF

After incomplete spinal cord injury (SCI), the adult central nervous system is spontaneously capable of substantial reorganizations that can underlie functional recovery. Most studies have focused on intraspinal reorganizations after SCI and not on the correlative cortical remodeling. Yet, differential studies of neural correlates of the recovery of sensory and motor abilities may be conducted by segregating motor and somatosensory representations in distinct and topologically organized primary cortical areas.

View Article and Find Full Text PDF