Chiral molecules are challenging for the pharmaceutical industry because although physical properties of the enantiomers are the same in achiral systems, they exhibit different effects in chiral systems, such as the human body. The separation of enantiomers is desired but complex, as enantiomers crystallize most often as racemic compounds. A technique to enable the chiral separation of racemic compounds is to create an asymmetry in the thermodynamic system by generating chiral cocrystal(s) using a chiral coformer and using the solubility differences to enable separation through crystallization from solution.
View Article and Find Full Text PDFPharmaceutical cocrystals are highly interesting due to their effect on physicochemical properties and their role in separation technologies, particularly for chiral molecules. Detection of new cocrystals is a challenge, and robust screening methods are required. As numerous techniques exist that differ in their crystallization mechanisms, their efficiencies depend on the coformers investigated.
View Article and Find Full Text PDFCocrystallization has been promoted as an attractive early development tool as it can change the physicochemical properties of a target compound and possibly enable the purification of single enantiomers from racemic compounds. In general, the identification of adequate cocrystallization candidates (or coformers) is troublesome and hampers the exploration of the solid-state landscape. For this reason, several computational tools have been introduced over the last two decades.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2021
We tap into an unexplored area of preferential crystallization, being the first to develop simultaneous chiral resolution of two racemic compounds by preferential cocrystallization. We highlight how the two racemic compounds RS-mandelic acid (MAN) and RS-etiracetam (ETI) can be combined together as enantiospecific R-MAN⋅R-ETI and S-MAN⋅S-ETI cocrystals forming a stable conglomerate system and subsequently develop a cyclic preferential crystallization allowing to simultaneous resolve both compounds. The developed process leads to excellent enantiopurity both for etiracetam (ee>98 %) and mandelic acid (ee≈95 %) enantiomers.
View Article and Find Full Text PDF