Remediating soils contaminated by per- and polyfluoroalkyl substances (PFAS) is a challenging task due to the unique properties of these compounds, such as variable solubility and resistance to degradation. In-situ soil flushing with solvents has been considered as a remediation technique for PFAS-contaminated soils. The use of non-Newtonian fluids, displaying variable viscosity depending on the applied shear rate, can offer certain advantages in improving the efficiency of the process, particularly in heterogeneous porous media.
View Article and Find Full Text PDFAqueous foam injection is a promising technique for in-situ remediation of soil and aquifers contaminated by petroleum products. However, the application efficiency is strongly hindered by foam's instability upon contact with hydrocarbons. Addressing this, we propose a new binary surfactant mixture of Sodium Dodecyl Sulfate (SDS) and Cocamidopropyl Hydroxysultaine (CAHS).
View Article and Find Full Text PDFSoil contamination with chlordecone, an organochlorine pesticide, is causing serious health problems, affecting crop production and local livestock valorization in the French West Indies. In-situ chemical reduction (ISCR) processes for soil remediation have shown promise but need improvement in terms of time, cost and effective treatment, particularly for andosol soil types. Our study shows that a 10-min microwave treatment significantly reduces chlordecone concentrations (50-90%) in contaminated andosol and nitisol soils.
View Article and Find Full Text PDFThe remediation of DNAPL-contaminated soil with lower-density fluids is ineffective due to the over-riding of displacing fluid. The densification of biopolymers is experimentally studied to develop a solution with the same density as a pollutant. Polymer solutions and contaminants are characterized through rheometer.
View Article and Find Full Text PDFProperties of fluids and media, such as soil moisture, may play a significant role in the absorption of microwave and heat distribution during the remediation of soil contaminated with volatile and semi-volatile compounds. Previous studies have been performed on soil samples placed inside a microwave oven cavity in a reactor far from the waveguide outlet or directly inside the metal waveguides. These conditions are far from in situ applications where the unsaturated soil is directly exposed to microwaves through the antenna slots.
View Article and Find Full Text PDFWe developed a decimetric size model based on coupling generalized Darcy's law and heat-transfer equations to model viscous dense non-aqueous phase liquid (DNAPL) pumping through highly permeable porous media under non-isothermal conditions. The presence of fingering and non-wetting phase ganglia was modeled through an unsteady capillary diffusion coefficient and an arbitrary heterogeneous permeability field. The model was validated using existing experimental data of a simple case, an oil injection in a 2D tank packed with glass beads.
View Article and Find Full Text PDF