Layer 5 (L5) pyramidal neurons receive predictive and sensory inputs in a compartmentalized manner at their apical and basal dendrites, respectively. To uncover how integration of sensory inputs is affected in autism spectrum disorders (ASD), we used two-photon glutamate uncaging to activate spines in the basal dendrites of L5 pyramidal neurons from a mouse model of Fragile X syndrome (FXS), the most common genetic cause of ASD. While subthreshold excitatory inputs integrate linearly in wild-type animals, surprisingly those with FXS summate sublinearly, contradicting what would be expected of sensory hypersensitivity classically associated with ASD.
View Article and Find Full Text PDFDendritic spines are the main receptacles of excitatory information in the brain. Their particular morphology, with a small head connected to the dendrite by a slender neck, has inspired theoretical and experimental work to understand how these structural features affect the processing, storage and integration of synaptic inputs in pyramidal neurons (PNs). The activation of glutamate receptors in spines triggers a large voltage change as well as calcium signals at the spine head.
View Article and Find Full Text PDFMagnesium (Mg) homeostasis is critical for metabolism. However, the genetic determinants of the renal handling of Mg, which is crucial for Mg homeostasis, and the potential influence on metabolic traits in the general population are unknown. We obtained plasma and urine parameters from 9099 individuals from seven cohorts, and conducted a genome-wide meta-analysis of Mg homeostasis.
View Article and Find Full Text PDFTRPV5 is unique within the large TRP channel family for displaying a high Ca selectivity together with Ca-dependent inactivation. Our study aims to uncover novel insights into channel gating through in-depth structure-function analysis. We identify an exceptional tryptophan (W583) at the terminus of the intracellular pore that is unique for TRPV5 (and TRPV6).
View Article and Find Full Text PDFTranscellular Ca(2+)transport in the late distal convoluted tubule and connecting tubule (DCT2/CNT) of the kidney is a finely controlled process mediated by the transient receptor potential vanilloid type 5 (TRPV5) channel. A complex-type-N-glycan bound at the extracellular residue Asn358 of TRPV5 through post-translational glycosylation has been postulated to regulate the activity of TRPV5 channels. Using in vitro Ca(2+)transport assays, immunoblot analysis, immunohistochemistry, patch clamp electrophysiology and total internal reflection fluorescence microscopy, it is demonstrated that the glycosidase β-galactosidase (β-gal), an enzyme that hydrolyzes galactose, stimulates TRPV5 channel activity.
View Article and Find Full Text PDFThe transient receptor potential melastatin type 6 (TRPM6) epithelial Mg(2+) channels participate in transcellular Mg(2+) transport in the kidney and intestine. Previous reports suggested a hormonal cAMP-dependent regulation of Mg(2+) reabsorption in the kidney. The molecular details of this process are, however, unknown.
View Article and Find Full Text PDFMagnesium (Mg2+) is essential for enzymatic activity, brain function and muscle contraction. Blood Mg2+ concentrations are tightly regulated between 0.7 and 1.
View Article and Find Full Text PDFBackground: Mutations of SCN8A encoding the neuronal voltage-gated sodium channel NaV1.6 are associated with early-infantile epileptic encephalopathy type 13 (EIEE13) and intellectual disability. Using clinical exome sequencing, we have detected three novel de novo SCN8A mutations in patients with intellectual disabilities, and variable clinical features including seizures in two patients.
View Article and Find Full Text PDFDrosophila neuromuscular junctions (NMJs) represent a powerful model system with which to study glutamatergic synapse formation and remodeling. Several proteins have been implicated in these processes, including components of canonical Wingless (Drosophila Wnt1) signaling and the giant isoforms of the membrane-cytoskeleton linker Ankyrin 2, but possible interconnections and cooperation between these proteins were unknown. Here, we demonstrate that the heterotrimeric G protein Go functions as a transducer of Wingless-Frizzled 2 signaling in the synapse.
View Article and Find Full Text PDFThe mitochondrial oxidative phosphorylation (OXPHOS) system consists of four electron transport chain (ETC) complexes (CI-CIV) and the FoF1-ATP synthase (CV), which sustain ATP generation via chemiosmotic coupling. The latter requires an inward-directed proton-motive force (PMF) across the mitochondrial inner membrane (MIM) consisting of a proton (ΔpH) and electrical charge (Δψ) gradient. CI actively participates in sustaining these gradients via trans-MIM proton pumping.
View Article and Find Full Text PDFMutations in the gene that encodes the atypical channel-kinase TRPM6 (transient receptor potential melastatin 6) cause HSH (hypomagnesaemia with secondary hypocalcaemia), a disorder characterized by defective intestinal Mg2+ transport and impaired renal Mg2+ reabsorption. TRPM6, together with its homologue TRPM7, are unique proteins as they combine an ion channel domain with a C-terminally fused protein kinase domain. How TRPM6 channel and kinase activity are linked is unknown.
View Article and Find Full Text PDFThe transient receptor potential melastatin type 6 (TRPM6) ion channel regulates the body Mg(2+) homeostasis by mediating transcellular Mg(2+) absorption in kidney and intestine. Here, the P2X4 receptor was established as a novel regulator of TRPM6 activity. Using RT-qPCR on a mouse tissue panel, P2x4 and P2x6 were shown to be expressed in the epithelium of the colon and of the kidney, two major sites of Mg(2+) reabsorption.
View Article and Find Full Text PDFThe epithelial sodium channel (ENaC) is responsible for Na(+) and fluid absorption across colon, kidney, and airway epithelia. Short palate lung and nasal epithelial clone 1 (SPLUNC1) is a secreted, innate defense protein and an autocrine inhibitor of ENaC that is highly expressed in airway epithelia. While SPLUNC1 has a bactericidal permeability-increasing protein (BPI)-type structure, its NH2-terminal region lacks structure.
View Article and Find Full Text PDFThe epithelial sodium channel (ENaC) is responsible for Na+ and fluid absorption across colon, kidney, and airway epithelia. We have previously identified SPLUNC1 as an autocrine inhibitor of ENaC. We have now located the ENaC inhibitory domain of SPLUNC1 to SPLUNC1's N terminus, and a peptide corresponding to this domain, G22-A39, inhibited ENaC activity to a similar degree as full-length SPLUNC1 (∼2.
View Article and Find Full Text PDFBackground And Purpose: APETx2, a toxin from the sea anemone Anthropleura elegantissima, inhibits acid-sensing ion channel 3 (ASIC3)-containing homo- and heterotrimeric channels with IC(50) values < 100 nM and 0.1-2 µM respectively. ASIC3 channels mediate acute acid-induced and inflammatory pain response and APETx2 has been used as a selective pharmacological tool in animal studies.
View Article and Find Full Text PDFPurpose: We examined the possible role of H(+) activated acid-sensing ion channels in pain perception. We characterized expression in bladder dome biopsies from patients with bladder pain syndrome and controls, in cultured human urothelium and in urothelial TEU-2 cells.
Materials And Methods: Cold cut biopsies from the bladder dome were obtained in 8 asymptomatic controls and 28 patients with bladder pain syndrome symptoms.
Acid-sensing ion channels (ASICs) are neuronal H(+)-gated cation channels, and the transient receptor potential vanilloid 1 channel (TRPV1) is a multimodal cation channel activated by low pH, noxious heat, capsaicin, and voltage. ASICs and TRPV1 are present in sensory neurons. It has been shown that raising the temperature increases TRPV1 and decreases ASIC H(+)-gated current amplitudes.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
November 2008
The ion-trap technique is an experimental approach allowing measurement of changes in ionic concentrations within a restricted space (the trap) comprised of a large-diameter ion-selective electrode apposed to a voltage-clamped Xenopus laevis oocyte. The technique is demonstrated with oocytes expressing the Na(+)/glucose cotransporter (SGLT1) using Na(+)- and H(+)-selective electrodes and with the electroneutral H(+)/monocarboxylate transporter (MCT1). In SGLT1-expressing oocytes, bath substrate diffused into the trap within 20 s, stimulating Na(+)/glucose influx, which generated a measurable decrease in the trap Na(+) concentration ([Na(+)](T)) by 0.
View Article and Find Full Text PDFDetection of a significant transmembrane water flux immediately after cotransporter stimulation is the experimental basis for the controversial hypothesis of secondary active water transport involving a proposed stoichiometry for the human Na(+)/glucose cotransporter (SGLT1) of two Na(+), one glucose, and 264 water molecules. Volumetric measurements of Xenopus laevis oocytes coexpressing human SGLT1 and aquaporin can be used to detect osmotic gradients with high sensitivity. Adding 2 mM of the substrate alpha-methyl-glucose (alphaMG) created mild extracellular hypertonicity and generated a large cotransport current with minimal cell volume changes.
View Article and Find Full Text PDF