Mature multiciliated ependymal cells line the cerebral ventricles where they form a partial barrier between the cerebrospinal fluid (CSF) and brain parenchyma and regulate local CSF microcirculation through coordinated ciliary beating. Although the ependyma is a highly specialized brain interface with barrier, trophic, and perhaps even regenerative capacity, it remains a misfit in the canon of glial neurobiology. We provide an update to seminal reviews in the field by conducting a scoping review of the post-2010 mature multiciliated ependymal cell literature.
View Article and Find Full Text PDFEpendymal cells make up the epithelial monolayer that lines the brain ventricles and the spinal cord central canal that are filled with cerebrospinal fluid. The ependyma has several functions, including regulating solute exchange between the cerebrospinal fluid and parenchyma, controlling microcirculation of cerebrospinal fluid via coordinated ciliary beating, and acting as a partial barrier. Dysregulation of these functions can lead to waste clearance impairment, cerebrospinal fluid accumulation, hydrocephalus, and more.
View Article and Find Full Text PDFNeuromyelitis optica (NMO) is an autoimmune demyelinating disease of the central nervous system characterized by the presence of autoantibodies (called NMO-IgG) targeting aquaporin-4. Aquaporin-4 is expressed at the perivascular foot processes of astrocytes, in the glia limitans, but also at the ependyma. Most studies have focused on studying the pathogenicity of NMO-IgG on astrocytes, and NMO is now considered an astrocytopathy.
View Article and Find Full Text PDFNeuromyelitis optica, a rare neuroinflammatory demyelinating disease of the CNS, is characterized by the presence of specific pathogenic autoantibodies directed against the astrocytic water channel aquaporin 4 (AQP4) and is now considered as an astrocytopathy associated either with complement-dependent astrocyte death or with astrocyte dysfunction. However, the link between astrocyte dysfunction and demyelination remains unclear. We propose glial intercellular communication, supported by connexin hemichannels and gap junctions, to be involved in demyelination process in neuromyelitis optica.
View Article and Find Full Text PDF